
r AD-O%65 WSCNSN UV-MADISON MATHEMATICS RESEARCH CENTER F/S 2/
AD-OV 62 IO ID ALGORITHMS FOR THE SOLUTION OF LINEAR COMPLEMENTARITY--ETCIU)

OCT 80 A BRANDT, C W CRYER OAAG9-80-C-0O41
UNCLASSIFIED MRCTSR-2131 NL

12jmnmmfmmnmff

EEmmnnEEEEmmEI
EEEEEEEEEEEEEE
EmEEEEEEEEEmmE

EEnuEEEnnnEEEI

. j ii~ _ -. .. . -i Y -'-ii~ r . ..

lit1

MRC Technical Summary Report '2131

MULTIGRID ALGORITHMS FOR THE SOLUTION
OF LINEAR COMPLEMENTARITY PROBLEMS

ARISING FROM FREE BOUNDARY PROBLEMS

Achi Brandt and Colin W. Cryer

0

Mathematics Research Center DTI0Q
University of Wisconsin-Madison - -.

610 Walnut Street 2. . -31
Madison, Wisconsin 53706 D

October 1980

(Received April 3, 19R0)

Approved for public release

Distribution unlimited

..Sponsored by!

U.S. Army Research office National Science Foundation

P.O. Box 12211 Washington, D.C.

, Triangle Park

N. tn Ca r, i na 2 7709 81 3 19 063
] •, , a - ,k-j igf -

UNIVERSITY OF WISCONSIN - "Ar'ISON
MATHEMATICS RESEARCH CENTER

MULTIGRID ALGORITHMS FOR THE SOLUTION OF LINEAR
COMPLEMENTARITY PROBLEMS ARISING FROM FREE BOUNDARY PROBLEMS

Achi Brandt*' and Colin W. Cryer**I(
2)

Technical Summary Report #2131
October 1980

ABSTRACT

We show that the multigrid algorithms of Brandt can be adapted to

solve linear complementarity problems arising from free boundary problems.

The multigrid algorithms are significantly faster than previous algorithms.

Using the multigrid algorithms, which are simple modifications of multigrid

algorithms for equalities, it is possible to solve the difference equations

to within truncation error using less work than the equivalent of six

Gauss-Seidel sweeps on the finest grid.

AMS (MOS) Subject Classifications: 35J65, 35R35, 65N99, 90C33

Key Words: Multigrid Algorithms, Free Boundary Problems, Linear
Complementarity Problems

Work Unit Number 3 (Numerical Analysis and Computer Science)

The Weizmann Institute of Science, Department of Applied Mathematics,

Rehovot, Israel.
**
Computer Sciences Department and Mathematics Research Center, University
of Wisconsin-Madison, Madison, WI 53706.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

(2)
Sponsored by the National Science Foundation under Grant No. MCS77-26732
and the United States Army under Contract No. DAAG29-80-C-0041.

SIGNIFICANCE AND EXPLANATION

Several free boundary problems, (including: saturated-unsaturated

flow through porous dams; elastic-plastic torsion; and cavitating journal

bearings) can be formulated as linear complementarity problems of the

following type. Find a non-negative function u which satisfies pre-

scribed boundary conditions on a given domain and which, furthermore,

satisfies a linear elliptic equation at each point of the domain where u

is greater than zero. We show that the multigrid algorithms of Brandt,

(in which solutions are computed on a series of nested grids) which were

developed to solve boundary value problems for elliptic partial differ-

ential equations, can easily be adapted to handle linear complementarity

problems. The resulting algorithms are significantly faster than previ-

ous algorithms in which only one grid is used, since the computation time

is proportional to the number of gridpoints on the finest grid.

V r>_-sion For

SLA

The responsibility for the wording and views expressed in this descriptive
sumary lies with MRC, and not with the authors of this report.

MULTIGRID ALGORITHMS FOR THE SOLUTION OF LINEAR
COMPLEMENTARITY PROBLEMS ARISING FROM FREE BOUNDARY PROBLEMS

Achi Brandt*' (1) and Colin W. Cryer'
(2

1.1 INTRODUCTION.

Several free boundary problems can be reformulated in the form of an (infinite-

dimensional) LCP (linear complementarity problem): Given a polygonal domain Q C Rn

with boundary M, and given functions f and g, find u (defined on S) such that

(in an appropriate weak sense)

(a) Lu(x) < f(x), x e Q

(b) u(x) >0, x e Q
(1.1)

(c) u(x) [u(x) - f(x)] = 0, x e Q2

(d) u(x) - g(x), x e aa

where Z is a given second order elliptic operator. The restriction that S1 is

polygonal is not essential, but suffices for our present purposes. we do not write

(1.1a) in the more usual form -Lu(x) + f(x) > 0 because we wish to maintain compati-

bility with the notation in previous papers by Brandt.

well-known examples of free boundary problems which can be written in the form

(1.1) include porous flow through dams (a recent reference is Baiocchi (1978]), journal

bearing lubrication (Cryer (1971a], Cimtti [1977]) and elastic-plastic torsion (Cea,

Glowinski, and Nedelec [1974], Lanchon [19741, Cryer [19791). General references

include: Duvaut and Lions (1976]; Glowinski, Lions, and Tremolieres [19761, and

Cryer [1977], Glowinski [1978]; Cottle, Giannessi, and Lions [1980]; and Kinderlehrer

and Stampacchia [1980].

The Weizmann Institute of Science, Department of Applied Mathematics, Rehovot,

Israel

Computer Sciences Department and Mathematics Research Center, University of
Wisconsin-Madison, Madison, Madison, WI 53706.

(1)Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

(2)Sponsored by the National Science Foundation under Grant No. MCS77-26732 and the

United States Army under Contract No. DAAG29-80-C-0041.

If 0 is approximated by a regular grid then the grid can be divided into

N = IGI "interior" points G and IDGI "boundary" points G. Let the grid size

be h. When (1.1) is approximated using finite differences on G, one obtains a

(finite-dimensional) LCP:

(a) LU(x) < f(x), x e G

(b) U(x) > 0, x e G,
(1.2)

(c) U(x)[LU(x) - f(x)] = 0, x c G

(d) U(x) = g(x), x e 3G

where U(x) is an approximation to u(x) at the grid points x E G U 3G and where

L is a difference operator which approximates t. The coefficients of L are

0(h
- .

By multiplying (1.2) by h and eliminating the known values of U(x) on aG,

the LCP (1.2) may be written in matrix form

(a) AU < b

(b) U > 0, (1.3)

(C) U T(AU - b) 0,

where U is the N-vector of values of U(x) on G, and A is an N x N matrix

with coefficients which are 0(l). Since we will assume that A is symmetric and

negative definite, (1.3) could be brought into the canonical form for an LCP by multi-

plying (1.3a) by -1.

For example, if t is the Laplace operator in R 2 , then a possible choice for

L would be the classical five-point difference operator, in which case A would be

a matrix with diagonal elements -4 and off-diagonal elements either 0 or 1.

The general structure of a finite-dimensional LCP is that we have a pair of vector

inequalities together with the complementarity condition which states that at every

point at least one of the inequalities must in fact be an equality.

There is an extensive literature on the (finite-dimensional) LCP (see alinski

and Cottle [1978]). In particular, if A is negative definite, as we assume, then

there exists a unique solution to (1.2) and (1.3).

-2-

Since the LCP (1.3) arises from a free boundary problem, the matrix A has

special properties which make it possible to use specialized algorithms which are

particularly efficient. Such algorithms include projected SOR (Cryer [1971], Glowinski

[1971]) the method of Cottle and Sacher 11977], and the modified block SOR (MBSOR)

method of Cottle, Golub, and Sacher [1978]; Cryer [1979a] summarizes these algorithms

and Cottle [1974] gives numerical comparisons between them.

Recently, it has been found (Brandt [1977], Brandt and Dinar [1979]) that multigrid

algorithms are an effective tool for solving linear equations of the form

AX- b . (1.4)

The basic idea of these multigrid algorithms is to compute on a sequence of nested

grids. The computation proceeds on a po-rticular grid until the error becomes smooth

and the rate of convergence slows, at which point the computation is transferred to a

coarser grid. When the error has been reduced on the coarser grid, the solution on the

finer grid is corrected using interpolated values from the coarser grid.

In this paper, we show how the multigrid algorithms FAS and FMG of Brandt can be

modified to solve the LCP (1.3). We find that the modified multigrid algorithms are

substantially faster than previous algorithms. Indeed, with only minor modifications,

the standard multigrid programs solve the LCP with essentially the same efficiency as

is attained for linear equations.

The paper is organized as follows. In Section 2, we describe PFAS, the projected

full approximation scheme for solving (1.3); PFAS combines the concepts of multigrid

algorithms with those of projected SOR. In Section 3, we discuss the implementation

of PFAS, and in Section 4, we give numerical results obtained using PFAS. In Section 5,

we discuss alternative implementations of PFAS, the last of which leads to substantially

improved convergence (we also include several unsuccessful implementations because they

are instructive).

In Section 6, we describe results obtained using PFMG, the projected full multi-

grid algorithm for solving (1.3). The basic idea of PFMG is to compute the initial

-3-

approximation on each grid by interpolating an accurate solution on the next coarser

grid. Using PFMG we are able to solve the LCP to within truncation error using less

work than the equivalent of six Gauss-Seidel sweeps on the finest grid.

Our results are summarized in Section 7 and some possible extensions are

mentioned. Finally, listings of the programs are given in the appendices.

-4-

2. PFAS (PROJECrED FULL APPROXIMATION SCHEME).

Brandt [1977], and Brandt and Dinar (19791 give a detailed exposition of multigrid

methods and their philosophy, and the reader is referred to these papers for background

information. The algorithm described below, PFAS, is a modification of the FAS (Full

Approximation Scheme) which is considered in Section 5 of Brandt [1977], and Section 2.2

of Brandt and Dinar [1979].

The polygonal domain Q C R is approximated by a sequence of grids

G1 C G2 C ... C GM C Rn,

with corresponding grid sizes

hI = 2h = 4h = ... =2 M-hM

Let Fk be the restriction of f to C,

Fk (x) = f ~x), x Gk
. (2.1)

k
Then, on G the difference equations (1.2) approximating (1.1) take the form

(a) LkUk (x) < F k (x), in Gk

k k
(b) U Cx) > 0, in G

k kk Fk k(2.2)

(cx)U x)[LkUk(x) - Fk(x)] = 0, in Gk ,

(d) Uk(x) = g(x), in qGk

Let the points of Gk be ordered: xk 1kx2 kxN C G, and let Uk be the vector

Uk = {U k. : 1 < j < Nk }
= {Uk(x) : 1 < <N .

I

Then, (1.3) takes the form

Ca)
AkU k < bk

k
(b) U > 0 , (2.3)

(c) (Uk) T AkUk - bk]= 0.

where

Ak k)A- • a:<i, j },(2.4)

is a known sparse symmetric negative definite matrix and b k {bk } is a known vector

k 2kk k k
with components b hF x) (except at points x. adjacent to 3Gk).

-5-

THE PROJECTED GAUSS-SEIDEL ALGORITHM

It is possible to solve the LCP's (2.2) and (2.3) using the projected Gauss-Seidel

algorithm which we now describe.

Let ukO (x) be an approximate solution of (2.2) and (2.3). We compute recur-

sively a sequence of approximations uk ' l W, u k,2 (x),..., as follows. Let ukl s - I (x)

be given. From (2.2d), the boundary values of u k Sx) are equal to g(x). The

interior values of u k Sx), which together comprise the vector

k,s k,s k,s k
u = fu. : < < N,} {u) : < j < , (2.5)

are obtained, point by point, by first applying the classical Gauss-Seidel method to

(2..,) to obtain

= k,s-i b - k k,s k k,s-l.
u. U. + [b - aau j a]u /a , (2.6)

= uk,s- + ks /a k s
u rj /a.. , say,

and then projecting: k,s = k.,~(27

u. . max{O,u ,s- . (2.7)
3 J

The process of applying (2.6) and (2.7) for 1 < j < N to obtain uk s from uk s - I

will be called a G k projected Gauss-Seidel sweep, or a Gk projected sweep. The

~kc,s
quantities r. will be called the dynamic residuals.3

It is known (Cryer [1971], Glowinski [19711) that u , Uk as s =.

When implementing the projected Gauss-Seidel method only the latest values of the

solution are stored. We will, therefore, often suppress the iteration counter s and

denote one projected Gauss-Seidel sweep applied to (2.2) and (2.3) by

uk 4 Projected Gauss-Seidel uk : Lk,F k] . (2.8)

Similarly,

Vuk = k,s - ks-1 (2.9)

k

will denote the difference between the latest approximation u and its predecessor,

while

-6-

k ' uk,s- 1 _ k,s-2VUo~ - -u , (2.10)
old

denotes the previous difference.

ERROR ESTIMATES FOR THE PROJECTED GAUSS-SEIDEL ALGORITHM

When implementing the projected Gauss-Seidel algorithm as part of a multigrid

process, it is important to be able to estimate the error. In order to do so, we note

that since, by assumption, -Ak is symmetric and positive definite, there exists a

coercitivity constant ak > 0 such that

w (-A)w >akw w , (2.11)

for all w e R

Lemma 2.1

Let U be the solution of the LCP (2.3), and let u > 0 be an approximate

solution. Let
k =rk5 bk _Aku k

r = - - , (2.12)2

k kand r Cr), where

k if k >0

r+j { rk k (2.13)
rain(0~ if ui

Then

(U-k u k)T(-Ak)(U - uk)<U - uk) T(-r) (2.14)

Hence,

Hl k _ u k 12 _ .lr 2 . (2.15)

Proof: With r defined as above, we see that u satisfies the LCP:+

(a) Akuk < bk - rk

k
(b) u > 0, (2.16)

(c) (u k) T(Ak u - bk + rk) = 0

Following Falk [1974] we multiply (2.3a) by the non-negative vector (u k T and use

the complementarity condition (2.3c) to obtain

-7-

I.- -

(uk - Uk)TAkUk < (ub
k _ ()

Similarly, multiplying (2.16a) by (Uk)T we obtain

(Uk - uk)TAku.k (< - uk)T(bk - k (*
+

Adding (*) and (**) and combining terms we obtain (2.14) and hence (2.15). 0

Lemna 2.2.

Let Uk be the solution of the LCP (2.3), and let uk > 0 be an approximate solu-

tion obtained after one or more Gk projected sweeps. Let

Ak = Dk _ Lk _ pk) (2.17)

where Dk is diagonal, and L and pk are strictly lower and upper triangular

matrices, respectively.

Then u satisfies the LCP

Akk k ku k

Au < b - PVu

u >0 , (2.18)

(u)T (Au - bk + PkVu5 0.

Hence,

I1 - uk112 <c .kz lpk112 I1Vuk II2 . (2.19)

Proof: Consider the projected Gauss-Seidel method defined by (2.6) and (2.7). For

kc k,s 'each point x. we first compute the dynamic residual . . The new value of u.
k

is chosen so as to reduce the residual. Denote the residual at the point x.
^k,s

immediately after step (2.7) by rj I so that

k,s =~ik,s k u k,s k,s-l (2.20)r = r. - a..(u. - u.)..0
J : :3 j : :

Pmembering that Ak is negative definite, and hence ak. < 0, we see that there are:3

two possibilities:

either u.'s > 0 and k,s =0,:3 :3

k ~s 'k's>or u 0 and rk >0
j k

Thus, dropping the superscript s, and setting rk= {r. :1< j k

-8-

k 0

r > 0 (2.21)

(uk Trk 0(u)r = .

Let

k b _ k k
r = -Au

It is readily seen from (2.17) that

k ^k pk (k,S uk,s-1r =r + -(u,
(2.22)

^k k k
=r + P Vu

Combining (2.21) and (2.22) we obtain (2.18). Comparing (2.16) and (2.18) we see

that the arguments which led to (2.15) from (2.16) may be applied to (2.18), with r

replaced by -P kVu k, to obtain (2.19).

As Lemmas 2.1 and 2.2 show, we can estimate the error in an approximate solution

kc k kc k
u in terms of the residual r or the difference Vu ; we will usually use Vu to

kestimate the error, since this quantity is readily available during a G projected

sweep.

Remark. The reader may wonder why we bothered to introduce r in Lemma 2.1, since

(2.15) holds with r replaced by r . The reason is that for the LCP (2.3) there+

may be large positive residuals at points x. where = (x k 0, but this does notJ J

mean that the error is large. [

In multigrid algorithms it is necessary to compare norms on different grids. We,

therefore, wish to introduce a norm which is not grid dependent. To do so, we proceed

as follows.

k
We first note that, to a good approximation, the coercivity constant ak for -A

satisfies

a k - h2

where a is the smallest eigenvalue of C.

Next, assume that the approximate grid function u has been extended to a

function u k(x) on Q approximating the solution u(x) of (1.1). Then

-9-

- A4-

,* I

I1u(x) - uk (x) 112, Q If lu(x) - k cx) !2dx .

N k:- I~~-2i'
n

n

<hk 1 P l2 11 Vuk112 ,

* I~kII n--2

1 hk lvu112

nor 11Pk12 are essentially independent of k; for example, for the five-point

formula, 11Pkl 2< 2. Thus a measure for the error 11u(x) -uk(x) 112,Q is provided by

n----2

IVuk G=- h2 IVllu 12 (2.23)

and this norm will be used in the computations.

PFAS (PROJECTED FULL APPROXIMATION SCHEME).

PFAS (Projected Full Approximation Scheme) obtains an approximation u to the

solution UM on the finest grid GM by recursively generating a sequence of approxi-

-k k
mations u on the grids G

-k kEach u is an approximate solution to an LCP of the form (2.2) with F replaced

by a function ik which is defined later. In general, Fk is different from Fk so

that uk is not an approximation to U. However, iM - FM and so uM is an

approximation to UM.

We begin by initializing u to some suitable value. For example, we might set

-M Mu (X) g(x), on aG

-M M (2.24)
u(x) =0 in G

We also set

30 M
IVu MIIG 0, = , (2.25)

(where e is the desired accuracy on the finest grid, and where the astronomical number

30 M
10 ensures that at least two G projected sweeps are carried out),

-10-

iM(x) - F M (x), for x e GM

and (2.26)

(x) = LI(x), for xe Ge

We now make a number of GM projected sweeps,

_M I- H-
u- Projected Gauss-Seidel [uM:LM,F M]

. (2.27)

After each sweep we test whether

IfVu MjI1 6 C (2.28)

If so, the accuracy criterion is satisfied, and we accept u as an accurate approxima-

tion to UM _ 4 on GM.

It is known that Gauss-Seidel iteration is a smoothing process: the error

uM (x) - uM(x) becomes smoother as the number of sweeps increases, while, at the same

time, the rate of convergence slows down. We, therefore, carry out only a few

projected sweeps, stopping when either (2.28) is satisfied or

lV ,M1lG! n_ ,V'o'ld11G (2.29)

Here, n is a fixed parameter; in our work we have taken n = .5.

Suppose that (2.28) is not satisfied but that (2.29) is satisfied. This means on

the one hand that the accuracy of u must be improved and on the other hand that it

is inefficient to continue iterating on GM. The slow rate of convergence on

indicates that the error is smooth, so that the error can be represented satisfactorily

to the next coarsest grid, G - . We therefore move to GM -I .

Since tM(x) satisfies (2.2), with k = M and FM = ,M the error

VM(x) -U(x) - ;C(x) , (2.30)

satisfies the LCP

LMVM(x) <r ;(x), on GM

V, (x) + uM (x) > 0, on G
(2.31)_ M 0, on GM,

. M (XmlLMVH(X) - -"(.)I = 0, on G

vM(x) = 0, on DG

-Il-

I

where the residual r is given by

rM(x) = F (xi) - LMu(x), x GM
. (2.32)

As already observed, V M(x) is a smooth function and may, therefore, be accurately

M-1
represented on G . Furthermore, comparing (2.31) and (1.1) we see that VM(x) is

an approximation to the continuous solution v(x) of the LCP

IV(x) <r x), X C ,

VX) + uM (x > 0, x e Q
(2.33)

-M -H
Iv(x) + u Cx)] 1v(x) - r (x)) = 0 x e Q

v(x) = 0, on a0,

(where, by abuse of notation, r (x) and u x) are defined on 0 by appropriate

interpolation between the values of rM and uM on the gridpoints of GM). Thus, a

good approximation to (x) may be obtained by solving the finite difference approxi-

mation to (2.33) on G . That is, V(x) is closely approximated on GM by the

solution W- 1 (x) of the LCP,

(a) LM-lWx - (x) < SM r (x), on ,H-l
-M M-I -M M-1

(b) ,-'(x) + IH'lu(x > 0, on GMl (2.34)

Cc) WI(x) + IM-uM(x)I[L"W(x)- S r x)] = 0, on GM-

d) -i (x) = 0, on 3GM - 1

SM-l GM

Here 4-1 and S are operators taking grid functions on G into grid functions
H H

M-1 M-1-Hon G . (As an aid in memorization, note that in IM u the subscript M and

superscript M "cancel".)

The operators IM and S can be defined in many ways. One choice is to
M K

choose both IM and SM to be the injection operator:

-12-

M-]. M-1 2.5InJM-w(x) = w(x), x E G (2.35)

MMot er ch ic s or M-1 and M-1 will e discussed later.

If we were solving a linear boundary value problem then condition (2.34b) would not

apply and it would be most efficient to solve for the correction W-i on GMl' . Since

we are solving inequalities the problem is nonlinear and it is necessary to solve for a

full approximation' UM-l on G

Setting

5M- = wM) + 1M-l-
M W (2.36)

-M- 1
it follows that U x) satisfies the LCP

(a) LM-IU - l (x) < CM-l(x), in GM- ,

M-1
(b) 6M-I(x) > 0, in G

(2.37)

(c) 5M-I1x) LM-uM-l(x) - FM-(x)] = 0, in GM- I

-M-1-1(d) M (x) = g(x), on 3GM-

where

i-- M-- M-1 M-M-MF WCx) SMrM LM uW S l[F x) -LuM(x)I +L IM u Cx) (2.38)
M M M M

Finally, we set

-l M (2.39)
e- 611VuM 11G

and

uM-1 = uM-l- , (2.40)

M

where 6 is a constant; in our computations 6 has been set equal to .15.
-M M M,

To recapitulate, starting with initial values of u M
, e , and F , we first

carry out GM projected sweeps until convergence slows down. We then introduce a

subsidiary problem on GM 1 with known F-I and eM- I and initial approximation

-M-lu The process can be repeated, so that at any one stage of the computation we have--M1 -k-1 -1 ,6-1
sequence of grid approximations uM u (approximating -M-I -k-I

M M-l k-l - 1 M- -1-
respectively), tolerances f ,E.......k-, and right hand sides M,FM ... ,k

-13-

.. • .z . 77

j5
In the general case, U~is the solution of the LCP

(a) LUkk() <F Cx), in Gk

(b) Ux)>0, in Gk
(2.41)

(c) Uk(x)(Lk~k(x) - kx) 0, in Gk

(d) 5k~x) g(x) on BG k

or equivalently,

(a) AU~ Sb

(b) 6k 0, (2.42)

(c) C6k)TCAk~k -bk) =0

This LCP is solved approximately using Gk projected sweeps until the latest approxi-

-kmation u satisfies either

IVkIGe (2.43)

or

VIk I~IV;~dIG (2.44)

if (2.44) holds but (2.43) does not then a new problem on Gk- is defined by

setting

-k-l k-ll-k Lk-kI +k-l k-l-k
F Sk (- u]+ k u ,(2.45)

e kl = 1 IV~kf 11 (2.46)
G

-k-l k-l-ku I
t k u (2.47)

5 k-1 = k-l + k-l-k ,(.8

ukk - (2.49)

k-i l k-l. k-l
where W is an approximation to Vk on G. Unless otherwise indicated, k

k-l .k-l
and S k will be taken to be the injection operator Inj k

-k-l
At some stage the latest approximation u must satisfy, (2.43)

1;k-1 11 < e kl ,(2.50)

-14-

fI

if for no other reason than that when k -1 -1 we cannot introduce any more sub

sidiary problems and must iterate until (2.50) is satisfied. Having found an approxi-

mation u of sufficient accuracy, we return to G . To do so, we first determine

k-i k-i
an approximation w to W from (2.48) namely

k-i -k-i k-l-k
Ik u (2.51)

Next, let I be an interpolation operator taking grid functions on G into
k-i

k k
grid functions on G . A possible choice for Ik is the linear interpolation operator

k defined as follows. If P1 ' P2, P3. and P are the corners of a square in
'k-i F3
G k - (see Figure 2.1) then

k-l(Pi i < 4

k-l k-li(w (pI) + w-)/2, 1 5
L wk-i w (P2)12

- i (= k - i k - i (2 .5 2)

(w (P) + W i4))2 6,

i-il

(Other choices for k will be discussed later.)

p4 k3

p6 p.7 k-k

Since Wki is an approximation to k on Gk-l,

ik k-i k -uk-i k-i-kki k-i -
1 k u] (2.53)

-15-

k-l

is an approximation to Vk, and, noting (2.49),

-k -k k k-i
U - u + Ik-l , (2.54)

is an improved approximation to 6k. However, because of the nonnegativity constraint
-~ -k

upon uk, we allow somewhat greater generality and replace u as follows:

-- k k k -k + k k-i -kU (u ;;k) .(u + 'k-lw ;u . (2.55)

Initially we set

-k-k -
S(u u k) . uk, (2.56)

but other choices will be considered later.

WAS is described by (2.24) through (2.56). A flowchart is given in Figure 3.1,

and the implementation is discussed in Section 3. If the algorithm converges, we will
-M

eventually obtain an approximation u satisfying the required accuracy condition

(2.28) and the algorithm will terminate.

-16-

3. IMPLEMENTATION OF PFAS.

The flowchart for PFAS is given in Figure 3.1. PFAS has been implemented as a

FORTRAN subroutine for the case when Q is a rectangle in R2 , f is the Laplacian

operator, Ik and Sk are injections (equation (2.35)), and Ik is linear
oprtr k an k ark-luo

interpolation (equation (2.52)). The subroutine PFAS, which is listed in Appendix A

as part of the program for solving the porous flow free boundary problem described in

Section 4, is a straightforward modification of an earlier program, FAS Cycle C, of

Brandt. In the subroutine PFAS most of the computations are performed by auxiliary

subroutines, and the flowchart shows the role played by these auxiliary subroutines.

One reason for giving a listing of PFAS is so that the reader can appreciate how

easy it is to implement PFAS. It may also be remarked that many other interesting free

boundary problems (for example, elastic-plastic torsion problems and cavitating journal

bearing problems) are formulated on simple polygonal regions, and the program given

here could easily be modified to handle these problems.

The following comments arise:

-k
1. In PFAS, the LCP for Ui is solved in the form (2.42) rather than (2.41),

but the values of u on aG are also stored. Thus, b = hkF is stored insteadk

of Fk. In going from Gk to G k - we have, from (2.45), since hkl =
2 hk,

_k-1 2 -k-i
b hk-i F

2 k-i -k k-k k- k-il-k
=hkl,(S k [F - Lu]I + L Ik u)

=2 k-lh- 2 -k k-k k-i k-i-k= hl(Sk hk b - A u I + L Ik u) , (3.1)

k-l[k Ak-k k-i k-l-k= 4 Sk [+A 1k ukG

2. A G -work-unit is the work required for one G projected sweep. The work

for one G projected sweep is approximately 2-n(M-k) G-work-units, and PFAS keepsMM

track of the total number of GM-work-units, WU. When no confusion is possible we

,M
write "work unit" instead of "G -work-unit".

-17-

INPUT PARANETERS: M, TOL, W4A.X

INPUT SUBROUTINES: F. G

.MTOL, k - M, WU -0, n - .5, 64 .15

SUBUBROUIIN SUBTE SURoTN tocorsr ri

V~k

V~k Vk -

SSUBROUTINE RELAX
- kU- k -kk,;

-1-k

3. The asymptotic speed of convergence is measured by the asymptotic convergence

factor P, which is defined by

- uG . (3.2)

4. All the numerical computations were performed on the Univac 1180 at the

University of Wisconsin-Madison. The programs were written in ASCII FORTRAN and com-

piled and executed using full optimization.

The Univac 1180 single-precision arithmetic has approximately eight decimals.

The residuals usually decrease quite rapidly at the beginning of a computation so the

round-off threshhold is quickly reached. For example, for the problem considered in

Section 4 with M = 5, IIUMIIG is about 2x10 3 and the single precision algorithm went

into a loop when IPuMG reached 5x10 - 6 after a mere 50 work units.

In the numerical experiments we were particularly interested in measuring the

asymptotic convergence factor v. To eliminate round-off effects, all the computations

reported on here used double precision arithmetic. Of course, this is not normally

necessary. Furthermore, even if very accurate solutions of the discrete problem (2.2)
-M

were required, it would suffice to store u in double precision and all other

quantities in single precision.

The execution times quoted are those provided by the Univac 1180 Exec. System.

As is often the case on timesharing systems, the times are only reproducible to within

about 10%.

Because of its word length, the UNIVAC 1180 can only directly access 64K words

of storage. When M > 7 more than 64K words of storage are needed by PFAS and there

is a significant degradation in performance.

5. To measure v the iterations were continued for the first 100 work units,

unless the residuals vanished before. In practice one usually iterates only for about

30 work units.

We also used several values of M in order to measure the dependence of

upon M.

-19-

I - " "_,t 2 ' "'f" f- " -ir '

Part of the output of a typical computation using PFAS is shown in Figure 3.2.

After each Gk projected sweep, the values of the level k, the residual norm lukll G

and the number of work units WU are printed out.

The computations starting at a level M/level (M- 1) junction and continuing

until the next level M/level (M-1) junction are called a cycle (see Figure 3.2).

-H -9 -9For the cycle shown in Figure 3.2, Ivu IIG decreased from .293 10 to .110 10

with the expenditure of (99.039-94.400) = 4.639 work units.

While minor variations do arise, a cycle often consists of a sequence of 2 sweeps

at each of levels M - 1,M - 2,...,1, followed by 2 sweeps at each of levels

2,...,M - 1, terminating with 2 or 3 sweeps at level M. If this pattern is followed

with 3 sweeps at level M then the average number of work units per cycle is

3 + 4t2 -n + 2 - 2 n + ...] = 3 + 4/(2 - 1) , (3.3)

and the average number of work units per GM projected sweep is 1 + 4/(3(2 - 1)).

Of course, very irregular patterns are observed when the round-off threshhold is

reached.

6. As can be seen from Figure 3.2, i(vuM(IG decreases steadily but not very regu-

larly, in part because of slight variations in the number of sweeps at each level. To

evaluate the algorithm, we have used two quantities:

rf = VUfnaIM l l G = the value of IIVuM11G at the end of the last complete (3.4)rf

cycle before 100 work units,

'f= [IIVUfina IGb -M t l /[W final initial (3.5)f=11 finlIG/1" Uinitial fG])35

Il~M -o
where I; till 1 is the value of ilu 1G after the first G sweep. 1f is an

estimate for the asymptotic convergence factor P.

For example, for the data in Figure 3.2, the value of IIvu ntiI G (which is

not shown in Figure 3.2) was 4.95 and, of course, WUinitial = 1. Thus,

-20-

LEVEL 5 RESIDUAL NORM= .755-010 WORK= 91.400

LEVEL 6 RESIDUAL NORM= .126-008 WORK= 92.400

LEVEL 6 RESIDUAL NORM= .515-009 WORK= 93.400

LEVEL 6 RESIDUAL NORM= .293-009 WORK= 94.400

********************END OF CYCLE********************MU = .7771

LEVEL 5 RESIDUAL NORM
=

.196-009 WORK
=

94.650

LEVEL 5 RESIDUAL NORM= .133-009 WORK= 94.900

LEVEL 4 RESIDUAL NORM= .879-010 WORK= 94.963

LEVEL 4 RESIDUAL NORM= .613-010 WORK= 95.025
LEVEL 3 RESIDUAL NORM= .385-010 WORK= 95.041

LEVEL 3 RESIDUAL NORM= .257-010 WORK- 95.057

LEVEL 2 RESIDUAL NORM= .133-010 WORK= 95.061

LEVEL 2 RESIDUAL NORM= .717-011 WORK= 95.064

LEVEL 1 RESIDUAL NORM= .243-011 WORK
=

95.065

LEVEL 1 RESIDUAL NORM= .447-012 WORK= 95.066
LEVEL 2 RESIDUAL NORM= .303-011 WORK= 95.070

LEVEL 3 RESIDUAL NORM= .189-010 WORK- 95.086

LEVEL 3 RESIDUAL NORM= .714-011 WORK= 95.102

LEVEL 4 RESIDUAL NORM= .686-0 10 WORK= 95.164
LEVEL 4 RESIDUAL NORM- .255-010 WORK= 95.227

LEVEL 4 RESIDUAL NORM= .138-010 WORK= 95.289
LEVEL 5 RESIDUAL NORM= .151-009 WORK- 95.539

LEVEL 5 RESIDUAL NORM= .534-010 WORK= 95.789
LEVEL 5 RESIDUAL NORM= .284-010 WORK= 96.039

LEVEL 6 RESIDUAL NORM= .473-009 WORK= 97.039

LEVEL 6 RESIDUAL NORM= .194-009 WORK- 98.039
LEVEL 6 RESIDUAL NORM= .110-009 WORK= 99.039
********************END OF CYCLE********************MU = .7787

LEVEL 5 RESIDUAL NORM= .737-010 WORK= 99.289

LEVEL 5 RESIDUAL NORM= .499-010 WORK= 99.539

LEVEL 4 RESIDUAL NORM= .331-010 WORK= 99.602

LEVEL 4 RESIDUAL NORM= .231-010 WORK- 99.664

LEVEL 3 RESIDUAL NORM= .145-010 WORK= 99.680

Figure 3.2: Typical Output for the PFAS Algorithm.
(M = 6, Problem (4.1)-(4.2), Run #X67368)

-21-

-~ ~ ,~. .*

adrf .110 10 - 9

~and

[.110 i0-911/(99.039 - 1)I ~f =[4.9 7i 79 .775

We usually only quote rf to one decimal place and Zf to two decimal places,

since this is quite adequate for our purposes.

PFAS computes and prints

[IV-UMIIG! -M i/[WU-WU initial (3.6
= IntinitialaG (3.6)

at the end of each cycle.

7. In all the experiments reported here the parameters 6 and n (see (2.29)

and (2.39)) were given by 6 = .5 and n = .15. According to Brandt [77] the rate of

convergence is not very sensitive to changes in these parameters, and this was con-

firmed in a few experiments.

In a few cases, but never for 6 = .5 and n = .15, the program "hunted": that

is, the program went down from GM to G , up to Gk for k < M, and then down

1 Magain to Q instead of continuing up to GM . This might happen several times before

GM was reached again.

-22-

4. NUMERICAL RESULTS FOR POROUS FLOW THROUGH A DAM.

Calculations were performed on the well-known free boundary problem describing
the flow of water through a porous dam. The geometry is shown in Figure 4.1. Water

seeps from a reservoir of height yl through a rectangular dam of width a to a

reservoir of height y2 ' Part of the dam is saturated and the remainder of the dam is

dry. The wet and dry regions are separated by an unknown free boundary which must be

found as part of the solution. For an introduction to the problem see Bear [19721,

or Cryer [1976].

A -free surface

dry

y 1 E
head water seepage face

saturated e

(wet)0

-1v_ tail water

__________ -a -. x
B impervious foundation C

Figure 4.1 Seepage Through a Simple Rectangular Dam

As shown by Baiocchi (1971] the problem can be formulated as follows: Find u on

the rectangle Q = ABCF such that

V u < 1, on Q,

u > 0, on 0,

2
u(V u - 1) = 0, on S, (4.1)

-23-

(y - y) 2
/2 on AB

U g (Y 2 - Y) 2/2 on CD (42

u = g = 2 2 (4.2)
[yl(a - x) + y2(x)]/2a, on BC

0, on DFA,

which is in the form (1.1).
k-ian k-i bigijcin

This problem was solved using PFAS, with Ik and s being injections
kk k

(equation (2.35)) and with I defined by linear interpolation (equation (2.52)).

-MThe initial values of u were obtained by interpolating the boundary values of u

linearly in the x direction. A listing of the program is given in Appendix A.

We considered the well-known case, y1 = 24, y2 = 4, and a = 16. In all

computations G1 was a (2 + 1) x (3 + 1) grid with hI = 8. The finest grid used

7
was G with (128 + 1) x (192 + 1) = 24897 grid points.

To give the reader an idea of the solution, the solution U2 of (2.2) is given

to four decimal places in Table 4.1.

0 4 8 12 16

24 0 0 0 0 0

20 8 2.5371 0 0 0

16 32 18.1486 6.7841 0 0

12 72 47.2732 24.9879 7.9120 0

8 128 89.9564 53.9823 22.6601 0

4 200 146.5702 94.3247 44.7462 0

0 288 218.0000 148.0000 78.0000 8

Table 4.1. U 2 for the Dam Problem
(Run #X34654)

M
The numerical results, for different values of M, and c =TOL=0, are given in

Table 4.2. The most important conclusions are that convergence always occurred and that

the convergence factor lf is always less than .81.

-24-

Run # X34654 X34654 X34654 X34654 X34654 PC 3567

M 2 3 4 5 6 7

GM 5 x 7 9 x 13 17 x 25 33 x 49 65 x 97 129 x 193

rf 0* 4(-17)* 1(-13) 1(-8) 1 (-10) 1(-7)

lif .404 .607 .726 .813 .778 .81

Execution
Time for 100 .114 .428 1.04 3.55 13.39
Work Units
(Seconds)

PSORopt .18 .49 .71 .84 .92 .96

Table 4.2. Solution of the dam problem using PFAS

*Reached round-off level before 100 work units.

**Required 70K workspace so extended storage facility invoked, and timing not

compatible.

We now compare the convergence factors hf in Table 4.2 with those for other

methods of solving the LCP (2.2).

A popular method of solving the LCP (1.3) is GM projected SOR (point SOR with

projection) which has also been called "modified SOR" by Cottle.

M -M
When using G projected SOR it is observed experimentally that the values of u

settle down quite quickly into positive values and zero values. Thereafter GM

projected SOR is equivalent to using point SOR on the subset GM = [x GM U (x) > 0.+

Thus the asymptotic convergence factor for GM projected SOR is in general equal to

the asymptotic convergence factor for point SOR on G +. it is known (Varga [1962,

p. 2941) that for a region of area A and for the finite difference equations corres-

ponding to the five-point difference approximation to Laplace's equation with stepsize

h, the convergence factor for the optimum choice of overrelaxation parameter w is

approximated quite well by

2
01 (h) = 2 -1 . (4.3)

1 + 3.0151h /A]

-25-

S.-. . . -

In the present case we do not know the area of G M but, as a rough guide, the area

M
of G is approximately equal to the area of 0, which is about 80% of the area of

the rectangle ABCF. Therefore, for our present purposes the asymptotic convergence

factor for GM projected SOR with optimum choice of w may be taken to be

S p2 - 2 - , (4.4)
PS0Ropt 1 + 3.015[h 2 /(.8 x 16 x 24)]- 1 + .172 h

and these values are given at the bottom of Table 4.2.

As Table 4.2 shows, for large problems, PFAS is faster than GM projected SOR. On

G 7 , for example, the increase in speed (measured in work units) is Zn.96/Xn.81 - 5.2.

Against this, two factors must be borne in mind: (1) PFAS is more complicated and

requires more overhead per work unit; (2) PFAS requires somewhat more storage. We

discuss these two factors below, but before doing so we wish to emphasize that although

these factors reduce the advantage in speed of PFAS, the measured execution times for

PFAS are much smaller than those for GM projected SOR (see Tables 5.3 and 6.3).

1. Overhead.

To obtain an indication of the additional overhead required by PFAS, we compared

execution times for M = 5. We first used PFAS with 6 = 2.10-8. This required

96.156 work units and took 3.40 seconds. We then modified PFAS so that only the grid

k = M was used and so that over-relaxation was used with the over-relaxation parameter

w given by equation (4.4). We were thus using GM projected SOR with a nearly

J~ M 1toCM -8
optimum w. To reduce IIuMIIG to E = 2.10 required 146 work units and took

4.82 seconds. Since

(3.40/96.156)/(4.82/146) 1 1.07

we conclude that, in this application, the additional overhead required by PFAS only

increases the computation time per GM work unit by about 10%.

2. Storage.

As implemented here, PFAS keeps the solutions and residuals on all the grids, and

therefore requires storage for 2[l + 4- 1 + 4- 2 + ...1 = 8/3 GM grids. In contrast,

GM projected SOR requires storage for only one G grid.

-26-

If storage is at a premium, the residuals on GM need not be stored and PFAS

M -Mrequires only 5/3 times as much storage as G projected SOR. If u is stored to

double precision, but uk and bk are stored to single precision for k < M, only

4/3 times as much storage is needed. If F(X) were not the constant 1, but a com-

plicated function, then either the function values or the residuals would have to be

stored for GM projected SOR, and PFAS would require at most 33% more storage.

Finally, the PFMG algorithm described in Section 6 often need not store any data on

the GM grid (see Section 6).

Another possible algorithm for solving the LCP (1.3) is the MBSOR (modified block

SOR) algorithm of Cottle and Sacher [1978]. This algorithm is based upon the solution

of a sequence of "one-dimensional" LCP's in much the same way that line SOR is based

upon solving a sequence of "one-dimensional' equations. We used MBSOR to solve the

dam problem (4.1), (4.2), for the case M = 5. The program was kindly provided by

Professor Sacher. We tried a few values of the over-relaxation parameter w, and

found that 1.8 gave the best results. With w = 1.8 MBSOR required 114 iterations

to reduce IIVuMIiG to below 2.10- 8 and took 13.13 seconds. The following comments

arise:

1. In numerical experiments on the dam problem, Cottle [1974] found that MBSOR

was about 20% faster than "modified point SOR", that is, GM projected SOR. This is

consistent with the fact that, for equations, the convergence ratio for line SOR is

only faster by a factor of /2 than point SOR while there is more computation per

iteration. This is also consistent with the present results, since GM projected SOR

required 146 iterations to reduce the residual to 2.10 while MBSOR required only

114.

2. The poor execution time of MBSOR (13.13 seconds) compared to PFAS (3.40

seconds) can be explained in part by two factors: (a) MBSOR requires more computation

per iteration than is needed by PFAS for a single work unit; (b) the MBSOR program was

-27-

'., -,

written for the case of general coefficients, while the PPAS program takes advantage

of the properties of the five-point difference operator.

3. It must also be borne in mind that Cottle and Sacher [1978] found that MBSOR

was three times as fast as GM projected SOR for the journal bearing problem where

the solution is zero at a high percentage of the gridpoints.

We conclude from Table 4.2 and from the above discussion, that for the dam problem

(4.1), (4.2) PFAS is faster than GM projected SOR and modified block SOR for M > 5,

that is, for grids of dimension 33 x 49 or greater. Furthermore, we also conclude that

the values of P and p in Table 4.2 provide a reasonably accurate guide to
f SORpt

the relative performance of PFAS and GM projected SOR. We believe that PFAS will be

faster than both GM projected SOR and MBSOR for a wide range of problems.

4. For a grid GM with N gridpoints, both u-projected SOR and modified block

SOR have computation times which are 0(N 3/2). As Table 4.2 shows, the computation

time for PFAS is 0(N). Therefore, the performance of PFAS vis-a-vis the other methods

improves as the grids become finer.

-28-

5. ALTERNATIVE IMPLEMENTATIONS OF PFAS.

In this section we discuss alternative implementations of PFAS, the best of which

achieves substantially improved performance.

The improvement in PFAS which might be possible is suggested by considering the

asymptotic convergence ratio, FAS say, for FAS for Poisson's equation. For FAS, the

error reduction per G M-sweep is .5. If each G M-sweep is accompanied by, on average,

one Gk sweep for 1 < k < M - 1, then the number of work units per G M-sweep is

1 + 2-2 + 2-4 + ... =4/3

and the convergence ratio is (.5) 3/ 4 = .595, as stated by Brandt (1977, p. 351]. In the

present case, as observed in Section 3, the average number of work units per GM sweep

is

1 + 4/[3 (2n - 1)] = 13/9

so that

S= (5)9/13
FAS = (6188 .

(5.1)

This value of A is observed experimentally. The worst observed value of ; for

Tivauof FAS Jf

the PFAS results quoted in Section 3 was If = .81. Thus, FAS (for equations) is

faster than PFAS (for LCP's) by a factor of Zn .81/Zn .6188 = 2.28.

Plausible reasons why PFAS is slower than FAS include the following:

-kDl: Negative components of u

The inequality (2.41b) requires that Uk be non-negative. In each Gk projected

sweep the step (2.7) ensures that u is non-negative. Furthermore, if Ik is
-k-i

the injection operator the initial approximation u defined by (2.47) is also non-

negative. However, (2.54) does not preserve non-negativity: in returning to Gk from
k-l -k
G the initial approximation u may have negative components, and this is often

k
observed. Of course, any negative components are removed in the first subsequent

G

projected sweep, but nevertheless the introduction of negative components must retard

convergence. El

-29-

......... 2

D2: Large residuals near the free boundary.

At a point x e Gk where uk(x) = 0 the corresponding residual

Rk(x) F (x) -Lk_ (x) (5.2)

must be non-negative because of the inequality (2.41a) but need not be small. 0

D3: Influence of the discrete interface.

The discrete interface Fk C R2 is the interface between the set of points where

k > 0 and the set of points where U k = 0. Fk approximates the continuous inter-

face, or free boundary, F separating the points where the solution u(x) is positive

from the points where u(x) is zero.

kIn special cases it may happen that F = F for all k, in which case PFAS con-

verges as fast as FAS. An example is given by problem (5.3), (5.4) below with R = 2,

kfor which . is the line y = 5 - 2x; it is found experimentally that F = F for

k < 6.

In general, Fk and F differ by O(hk) , and rk and F k- differ by O(hk
In particular, it may happen that 5k W > 0 while 5k-l(x) = 0. Furthermore, near

F k - the residuals may be less smooth because of the projection (2.7) and because of

k k-lthe irregular shape of F and F . This introduces errors in the coarse grid

corrections (2.55) thereby slowing the rate of convergence. Finally, the injec-

tion operator (2.35) is not adequate if the data to which it is applied is not

smooth. 0

k-1
Multigrid algorithms can often be speeded up by modifying the operators Ik

k-ian k
S k , and I We have tried a number of modifications of the corresponding PFAS

k k-l*

subroutines which were intended to address the difficulties D1 to D3 mentioned above.

The subroutine PFAS in Appendix A was modified so as to facilitate experimenta-

tion. This was done by changing the calls to the auxiliary subroutines so that input

"switch" parameters determined which version of each subroutine was used.

-30-

In addition, computations were also made for the following problem:

(a) V2u < f(x,y), in 0

(b) u > 0, in 0, (5.3)

(c) u = g, on 99

where = [0,31 x [0,2], and where f and g are chosen so that the exact solution

is

2
u = [cos(x+y) + 2][max{0;2.5 R - Rx - y}] . (5.4)

Here, R is a parameter which is chosen close to the value 2. Note that u e C2 ()

and u = 0 above the line y = R(2.5 - x). By changing the value of R we can force

gridpoints to lie very close to the exact free boundary; this may be expected to cause

PFAS difficulty because if uk(x) is positive but very small for some x e Gk then

it will take PFAS a large number of iterations to determine whether uk(x) is zero or

positive.

The modified version of PFAS is called PFASMD and is listed in Appendix B as part

of a program for solving the porous flow problem of Section 4 and problems (5.3), (5.4).

PFASMD was used to compute all the results in this section.

Our first modifications to the auxiliary subroutines of PFAS were not very success-

ful, but they were very instructive and we briefly summarize them. In all cases, the

results are for the dam problem with M = 5. (All were with run #X35519).
-k

Ml. PFAS was modified so as to enforce nonnegativity of u immediately after

k-I
returning from G -

. This was done by defining P in (2.55) by

-k-k -k
Ou ;u) = max{0,u k }

. (5.5)

The new subroutine was called INTAPR.

This modification converged slightly fa-ter than PFAS with If = .803. 0
-k

M2. The usual situation in which the nonnegativity of u is violated is as

follows.

-k k k-l k-l
Let u (x) 0, where x e G but x i Gk

. Let y E G be a neighbor of

x, such that u k(y) > 0. It may then happen that W-l(y) < 0. As a result,

k k-I -k
(I k_lw -) (x) may be negative, and if so the updated value of u (x) will be negative.

-31-

........

To avoid this, PFAS was modified by changing the subroutines SUBTRC and PUTJ so

that the operator Ik-l became
k

f-k -ku (y) if u (x) > 0 for all eight
k-l-kk
Ik u (y) = neighbors x of y in Gk, (5.6)

0, otherwise

The new subroutines were called PU IUNN and SUBTNN, respectively.

Remembering from (2.48) that

-k-i k-i k-l-k- =w + Ik u

we see from (5.6) and (2.41b) that the restraint Wk- (y) > 0 is enforced for every

k-i k _k
point y e G with a neighbor x E G such that u (x) = 0.

This modification converged slightly more slowly than PFAS, with If = .817. El

M3. PFAS was modified so that if the current value of u (x) was zero, then

-ku (x) was forced to be zero for k < M. This was done by changing the subroutine

RELAX. In effect, (2.7) was followed by a further operation:

If k < M and u (x.) = 0 then uk
.

= 0 . (5.7)) J

The new subroutine was called RELXFR.

This modification converged but much more slowly than PFAS with of = .887 0

M4. Brandt [1977, p. 3781 has found residual weighting useful when the coefficients

of the differential equation are changing rapidly. We, therefore, changed the sub-

k-lroutine RESCAL so that S became:
k

4S k r (x) = p(A)rk (x + Ahk) , (5.8)
kk

where A= 1A,2) for integers 6l'62 and the only nonzero p(A) are

O(0,0) = 1

O(0,l) = p(l,O) = P(0,-i) = p(-i,0) = , (5.9)
1

O(l,i) = p(l,-l) = 0(-I,1) = p(-l,-i) =

The new subroutine was called RESCAV.

-32-

:!1 .lp"

A " "& "' ' r ...

This modification cycled between G1 and G2 , as did also the further modifica-

k-i
tion for which Ik was also defined by (5.8), (5.9).

The nonconvergence of the modification M4 requires explanation, and this is

provided by

Lemma 5.1.

Let be defined by (2.56). For 1 < k < M let Uk be the solution of the

-k kLCP (2.41), where F satisfies (2.45). Finally, let Ik_1 satisfy

k k-i k-i k-l Nk-i(I (zk) = 0) - (z 0), for all z c R . (5.10)

Then for PFAS to converge it is necessary that

S k-l[Fk - LkUk] > 0 , (5.11)
k

k-l-k
I k U >_ 0 , (5.12)

k -

Ik-i-k T sk-i k Lk-k 1 0 (5.13)

- k k-

Proof: Wie apply PFAS by setting u = U , and forming the LCP (2.41) on G

Lk-i-k-i < -k-i

Uk-1 > 0 , (*)

(-k-)T(L k-1-k-i -k-l 0

-ovn hseacl ota k-I -k-i, k
Solving this exactly so that u we then return to G . Since PFAS converges,

-k . k.
the new value of u given by (2.55) must be equal to U That is,

k k-l k -k-i k-i-kI k-w = k-lU -I k U 0,

which, from (5.10), implies that

-k-i k-l-k
S I k U(.

Substituting into ()and noting (2.45) we obtain (5.11) through (5.13).

-33-

The following remarks follow from Lemma 5.1.

1. Lemma 5.1 brings out an interesting difference between multigrid methods for

equations and for inequalities. For equations, F k - Lk k = 0 and conditions (5.11)-

k-l k-l
(5.13) are satisfied for any reasonable choice of Sk and , but this is not

true for inequalities. 0

2. Since 6k solves (2.41), inequalities (5.11) and (5.12) will certainly hold

k-i k-i
if Sk and Ik map nonnegative vectors into nonnegative vectors. In particular,

k-l k-l
this will be the case if Sk and I take linear combinations of values with

nonnegative weights.

3. If S k- and I
k -

are injections, then (5.13) is implied by (2.41c). 0
k k
k-i k-il sijcin hn(.3

4. If S k is defined by (5.8) and (5.9) while Ik is injection then (5.13)
k k

does not hold in general. This is because in general there will be points x,y f G
k

such that x E Gk - 1, Uk(x) > 0, Uk(y) = 0, y is a neighbor of x in Gk
and

(Fk _ L U k) (y) > 0. Then

I k-uk(x) = uk(x) > 0
k

and

k-i - k k-k 1 -k k-k
(S k-(F L nU))(x) > z ,k Lk1

k)
(y) > 0,

so that (5.13) does not hold. This explains why the modification M4 of PFAS did not

converge. 0

We now describe two further modifications of PFAS which were tried:

M5. Bearing Lemma 5.1 in mind it is possible to introduce weighted sums for which

(5.13) does hold. One choice uses weighted residuals only near the boundary:

k -k -k4r (x), if u (x) = 0 or if u (y) > 0

k
k-i k W for all eight neighbors y f G of x , (5.14)

4kr~) k -kk p(A)r (x + Ah k) signum (u (x + h k)]

A
otherwise

where

1 , if 0 ,

signum a

-0, i f

-34-

I

and where the weights p(A) are as in (5.9). This was done by an appropriate change

in the subroutine RESCAL; the new subroutine was called RESCLl.

M6. As mentioned in D1 and D3 above, if u x) = 0 then it may happen that

-k -k k k-i -kux) = u (x) + I k_ -w (x) is not zero. It can be argued that changes of u (x)

from or to zero should only be done on Gk . We, therefore, modified the subroutine

INTADD so that in (2.55) P was defined by

-k -ku(x), if u x) > 0(C k x);u k Cx)) = (.5
0, otherwise

The new subroutine was called INTADM. 0

The modifications M5 and M6 are independent, and we solved (4.1), (4.2) with

M = 5 and different combinations of M5 and M6. In each case, the computations were

-M -8terminated when IVuMIiG< 2 10- . The results are summarized in Table 5.1.

Modifications M5 M6 M5 and M6

Work Units 96.15 126.12 42.81 43.76

Execution Time 3.40 4.67 1.63 1.76
(Seconds)

'f .815 .854 .623 .623

Table 5.1: Solution of (4.1), (4.2) with M = 5 and

M 2.10-8 for modifications 5 and 6.

(Run #X35026)

The performance of PFAS is of course problem dependent. In Table 5.2 we

compare modifications 5 and 6 for the problem (5.3), (5.4). As in Table 5.1 we

iterated until 11u W 11 <_ 2.10-8 on G5 .

-35-

Modifications - M5 M6 M5 and M6

Work Units 73.62 74.32 56.96 65.57

Execution Time 3.09 3.24 2.58 3.01

(Seconds)

vf .731 .738 .669 .704

Table 5.2: Solution of (5.3), (5.4) with M = 5, R = 32/15

and EM = 2.10-8 for modifications 5 and 6.

(Run #X35563)

We conclude from the results given in Tables 5.1 and 5.2 that the use of modifica-

tion 6 yields substantial improvements.

Finally, in Table 5.3 we extend Table 4.2 by comparing the measured execution

times for the projected SOR method and the best modification of PFAS (defined by

(5.15) and S defined by injection) for the dam problem for various values of M.
k

In each case, the iterations were continued until IIVul1 < 2 10-8
G

M 2 3 4 5 6
M

G 5 x 7 9 x 13 17 x25 33 x 49 65 x 97

GM Projected G iterations 19 34 69 146 295

SOR Execution Time (seconds) .02 .09 .60 4.88 39.37

PFASMD G
M

work units 23 30.5 38.7 42.8 45.7

(M6) Execution Time (seconds) .04 .12 .41 1.64 6.57

Table 5.3: Comparison of C
M

Projected SOR and PFASMD (modification M6)

M -8
for the dam problem with M = 5 and f 2.10

(Run #s X35584 and X35564)

As can be seen from Table 5.3, PFASMD is better than projected SOR except for

very small grids.

-36-

6. PFMG (PROJECTED FULL MULTIGRID ALGORITHM)

In this section we describe PFMG (Projected Full Multigrid Algorithm) which is a

modification of the Full >ultigrid Algorithm of Brandt. The flowchart for PFMG is

given in Figure 6.1. PFMG has been implemented as a FORTRAN subroutine for the case

2
when E2 is a rectangle in R , and X is the Laplacian operator. This subroutine

is listed in Appendix C as part of the program for solving the porous flow free

boundary problem of Section 4, and the problem (5.3), (5.4).

PFMG differs from PFAS 3 in the following respects.

M LIN
I. Instead of beginning on G , one begins on a coarser grid G and gradually

M
works up to G

The computations begin on the initial grid G , £ = LIN, with an initial approxi-
mation u. u is computed to the required accuracy using grids G

1
through G a

in the PFASMD implementation of PFAS, except that, as will be discussed below, the

decision to move to a different grid is based on slightly different criteria.

-z -Z+1
Once u has been found to sufficient accuracy, the initial approximation u is

obtained from

u = Jz u , (6.1)

where J is an interpolation operator taking grid functions on G into grid
z

functions on G
+

. It is known (Brandt [1977, p. 377]) that J should be more

Z+I - z
accurate than I in order to preserve the smoothness of u

In PFMG J+l is implemented as a subroutine INTRP3 which uses cubic interpolation.

(To use INTRP3 we must have Z > 2 and so LIN > 2.) INTRP3 is based upon repeated use

of the cubic interpolation formulas

f(I= [-f(-l) + 9f(O) + 9f(l) - f(2)]/16 , (6.2)

f = f(-l) - 5f(O) + 15f(l) + 5f(2)]/16 . (6.3)

Repeating this process, we finally obtain an initial approximation u on G

Thereafter, the computation proceeds essentially as in PFASMD.

-37-

n-...

0 40

II

4
0 .0 .

0 10
w4-4.

II -

C
C.t

*0 3'0

C 0
______ 4.. I4.

S0 c I

to E- I4 i- x 0m

o% It II I 4 I
C.~~A q3 :

C: C: o. - .

C. C)I C~4~1-

43 >. ~ 00-.

(3 .4 C

.1c u IT .

300 4. +

.4:~~ g .

I i's - ,0~~~~A +'u ~ ~ C' 4
'C~~~~~ a4 .3 4 10

4 43 '- 4

to m 3 * K E 04 -
> to..42 H 0 34 .

- 4 - 4 4 .4 4

_______________w + Its .0 4. +-43

IT v* 1.0.4
- ~ ~ ~ ~ ~ I - . .0C . 33H

M _______

-k k-i
Ii. u is used to estimate the local truncation error on G

-k
Suppose that the difference approximations are of order p and that u can be

k-1extended to a smooth function on Q. Then on G

k-i k-I-k .2 C-k k-i 64I U =h +(6.4)

and

k-i k-k . 2 -k -(p+2) k-1
Sk A u =1.Cu +2 , (6.5)

k-i -k
where the local truncation error T depends upon the derivatives of u . Eliminating

-k
the unknown Lu we obtain

k-i 2- k-i k-i-k k-i k-k
T - [A I u - 4S A u] (6.6)

2p - 1 k k

2p k-i -k k-k k-i k-i-k k-i-k
2p- 1[{4Sk (b - A U)} + {A I ku f4 4Skb1 (6.7)

In PFMG, the first { } in (6.7) is evaluated in subroutine RESSW; the second { }

is computed and added to the first using subroutines CORSRE and PUTU; the third { I is

evaluated in subroutine RESBW (which is a minor modification of RESSW); and, finally,
k-i

T is estimated in subroutine TAUCAM. The estimate (6.7) is not accurate near the

k-i
discrete interface, and so TAUCAM computes T where

z

k-i -k-i
T (x), if u (x) > 0

k-l(x) = (6.8)
S0 , if u k-l(x) = 0.

Because of the lack of smoothness of the solution near the free boundary, it is

not entirely clear what the value of p should be. It is known (Brezzi and Sacchi

[1976]) that the convergence of the finite difference approximations is probably only

O(h1) in the W1 '2 (0) norm, and Nitsche [1975] has proved 0th 2n h) convergence

in the infinity norm. However, these are global error bounds, while we are concerned

with the asymptotic behavior of the local truncation error T. Except in a neighbor-

hood of the discrete interface r, p is clearly equal to 2. Since the choice of

p may vary over Q, we could perhaps set p = 1 near r , but the values of T

near V are not very accurate and so, for simplicity, we have taken p = 2

everywhere.

-39-

k-i
III. As usual in numerical analysis the estimate (6.7) for T can be used in

two ways:

-k
(a) To estimate the error u - u.

Since2-p2 k-i
Since T 2 2 T and remembering that G has four times as many points as

Gk- l but hk 1 = 2h , we see from (2.23) that

IITrIIC - IT- II-3/2p. (6.9)

Combining (6.7), (6.8) and (6.9) we obtain an estimate for IITkIIG -

In the previous sections we were concerned with asymptotic convergence. That is,

we were concerned with the rate of convergence of u to k over a very large number

of iterations. However, if we want an approximation to the solution u of (1.1), it is

only necessary to iterate until the residual on G is small compared with the truncation

error, that is, until

11vk 11 -.= o(Tkl I) . (6.10)
-k

Once (6.10) holds, further computation will improve the accuracy of u as a solution

of the finite difference equations but will not improve its accuracy as an approximation

to u. Noting (6.9), we see that (6.10) will certainly be true if

IIV ,k __ I k-1 l . (6.11)

The stopping criterion (6.11) is incorporated in PFMG by setting

max{PRECL* £TX-1 ,1 TOL*RATIO**L} (6.12)

where PRECL, TOL, and RATIO are input parameters. (If TOL = 0, RATIO = 1, and

PRECL = 1 then (6.12) reduces to (6.11) for k = £).

-k -1
(b) Improvement of accuracy of u

k-i
Once an estimate for the truncation error T is available, it can be used to

z

improve the accuracy of the difference approximation on G k - by replacing F k - l (x)

k-i k-i k-iby F (x) + z (x) (see (6.4)). This is only done at points xE G such that

-k-i k-i k-iu (y) >0 for all four neighbors y e G of x since the value of T is not
4

-40-

I

accurate elsewhere. In PFMG this is done in the subroutine TAUCAM when k - 2 - 1 and

the input parameter ITAU = 1.

Of course, this is only meaningful when 'k-li111 is small compared to vu-kI1G:

if the iterations are continued for a long time then convergence will not occur because

the conditions of Lena 5.1 will be violated, but PFMG is never used in this way. In

fact, experience with equalities indicates that when T-extrapolation is used, the best

procedure is to avoid relaxation after returning for the last time to the finest grid.

IV. As already mentioned, the logic of PFMG is more complicated than that of PFAS;

it is best understood by consulting Figure 6.1 and Appendix C. Several parameters are

kintroduced and this enables one to control explicitly the number of G projected

sweeps at any level k, and the number of cycles at level Z. If

NRl = NR2 = NCYC = NCYCM = -1

PREC = PRECM = 0

RATIO = 1

then the logic of PFMG reduces to that of PFAS.

We now describe numerical results obtained using PFMG to solve the dam problem

, . G1

(4.1), (4.2). In all cases, is a (2 + 1) x (3 + 1) grid and LIN = 2.

To control the iterations we set NRl = 2, NR2 = 3, NCYC = 1, NCYCLN = 3, and

I. k
NCYCM = 10. The result is that in each cycle on grid G , two G projected sweeps

1kare carried out for 1 < k < k as we descend from G to GI , and one G projected

1 z.2sweep is carried out as we ascend from G to G . For k = LIN up to three G

* cycles are allowed, so that a good initial approximation can be obtained. For

LIN < Z < M only one G cycle is allowed, while up to 10 GM cycles are allowed.

This will be clearer after consulting Figure 6.2 which shows the output for M = 4.

-41-

............................. •••••••• •••.............o 2 ...e. 0e..............•
LEVEL 2 RESIDUAL NORM- .266+001 WORK- 1.000 IR1- I IR2(K)- I

LEVEL 2 RESIDUAL NORM- .174+001 WORK- 2.000 IR1- 2 IR2(K)- 2
GREEN NORM OF TAU-Z ..920+000 K- 1

LEVEL I RESIDUAL NORM- .803+000 WORK- 2.250 IRI- I IR2(K)- 1

LEVEL I RESIDUAL NORM- .130+000 WORK- 2.500 IRI- 2 IR2(K)- 2

LEVEL 1 RESIDUAL NORM- .814-002 WORK- 2.750 IR1= 3 IR2(K)- 3
LEVEL 2 RESIDUAL NORM- .889+000 WORK- 3.750 IR1 I IR2(K)- 3

LEVEL 2 RESIDUAL NORM- .258+000 WORK- 4.750 IRI 1 IR2(K)- 1
LEVEL 2 RESIDUAL NORM- .102+000 WORK- 5.750 IR1= 2 IR2(K)

=
2

GREEN NORM OF TAU-Z - .924+000 K- 1
LEVEL 1 RESIDUAL NORM= .238-001 WORK

=
6.000 IR- I1 IR2(K)= I

LEVEL I RESIDUAL NORM= .149-002 WORK= 6.250 IRI= 2 IR2(K)- 2

LEVEL I RESIDUAL NORM
=

.930-004 WORK
=

6.500 IRI 3 IR2(K)- 3

LEVEL 2 RESIDUAL NORM
=

.484-001 WORK= 7.500 IR1- I IR2(K)- 3
LEVEL 2 RESIDUAL NORM= .157-001 WORK= 8.500 IRI= 1 IR2(K)- I
LEVEL 2 RESIDUAL NORM- .443-002 WORK= 9.500 IR1

=
2 IR2(K)- 2

GREEN NORM OF TAU-Z = .983+000 K- I
LEVEL I RESIDUAL NORM- .956-003 WORK- 9.750 IR1 I IR2(K)- I
LEVEL I RESIDUAL NORM- .597-004 WORK

=
10.000 IRI =

2 IR2(K)- 2
LEVEL 1 RESIDUAL NORM- .373-005 WORK- 10.250 IRI- 3 IR2(K)= 3
LEVEL 2 RESIDUAL NORM- .117-002 WORK

=
11.250 IRI 1 IR2(K)- 3

GREEN NORM OF TAU-Z ..983+000 K- I
SOLUTION ERROR: L INFINITY NORM - .60769+000 GNORM - .19669+000
SOLUTION : L INFINITY NORM - .28800+003 GNORM - .12949+003

RELATIVE ERROR: L INFINITY NORM = .21100-002 GNORM - .15189-002

........ 3...

LEVEL 3 RESIDUAL NORM
=

.946+000 WORK- 3.812 IRI- 1 IR2(K)- 1

LEVEL 3 RESIDUAL NORM- .265+000 WORK- 4.812 IR- 2 IR2(K) 2
GREEN NORM OF TAU-Z - .114+001 K- 2

LEVEL 2 RESIDUAL NORM- .696-001 WORK- 5.062 IRI= 1 IR2(K)m I
LEVEL 2 RESIDUAL NORM- .257-001 WORK

=
5.313 IRI 2 IR2(K)- 2

GREEN NORM OF TAU-Z - .140+001 K- I
LEVEL I RESIDUAL NORM- .138-001 WORK- 5.375 IR1- 1 IR2(K)- I
LEVEL I RESIDUAL NORM- .143-002 WORK- 5.437 IRI= 2 IR2(K)- 2
LEVEL 1 RESIDUAL NORM- .894-004 WORK- 5.500 IR1- 3 IR2(K)

= 3
LEVEL 2 RESIDUAL NORM- .115-001 WORK= 5.750 IRI 1 IR2(K)- 3
LEVEL 3 RESIDUAL NORM- .157+000 WORK- 6.750 IRI= 1 IR2(K)- 3

GREEN NORM OF TAU-Z - .125+001 K- 2

SOLUTION ERROR: L INFINITY NORM - .32441+000 GNORM - .47357+000

SOLUTION : L INFINITY NORM - .28800+003 GNORM - .43262+003
RELATIVE ERROR: L INFINITY NORM - .11264-002 GNORM - .10947-002

0.0,. .,. ,,. 4
LEVEL 4 RESIDUAL NORM- .609+000 WORK- 2.687 IRI- I IR2(K)- I
LEVEL 4 RESIDUAL NORM- .189+000 WORK- 3.687 IRI 2 IR2(K)

=
2

GREEN NORM OF TAU-Z - .646+000 K- 3

LEVEL 3 RESIDUAL NORM- .953-001 WORK- 3.937 IR1= I IR2(K)- I
LEVEL 3 RESIDUAL NORM- .637-001 WORK- 4.187 IR1 2 IR2(K)- 2

GREEN NORM OF TAU-Z - .114+001 K- 2
LEVEL 2 RESIDUAL NORM= .351-001 WORK- 4.250 IRI- 1 IR2(K)- I
LEVEL 2 RESIDUAL NORM- .194-001 WORK- 4.312 IR1- 2 IR2(K)- 2

GREEN NORM OF TAU-Z - .108+001 K- I

LEVEL I RESIDUAL NORM
=

.913-002 WORK- 4.328 IR1= 1 IR2(K)- 1

LEVEL I RESIDUAL NORM- .984-003 WORK- 4.344 IR1 2 IR2(K)- 2

LEVEL I RESIDUAL NORM- .615-004 WORK- 4.359 IRI- 3 IR2(K)- 3
LEVEL 2 RESIDUAL NORM- .942-002 WORK- 4.422 IR1- 1 IR2(K)- 3

LEVEL 3 RESIDUAL NORM- .369-001 WORK- 4.672 IR1= 1 TR2(K)- 3
LEVEL 4 RESIDUAL NORM- .134+000 WORK- 5.672 IRI I IR2(K)- 3

GREEN NORM OF TAU-Z - .860+000 K- 3

SOLUTION ERROR: L INFINITY NORM - .48932-001 GNORM - .23107+000
SOLUTION : L INFINITY NORM - .28800+003 GNORM - .15697+004
RELATIVE ERROR- L INFINITY NORM - .16990-003 GNORM - .14721-003

'r TIME AT ELAPSE IS .1350 SECONDS *

Figure 6.2: Typical output for the PFMG algorithm
(M - 6, Dam Problem, Run #X67705)

-42-

Before discussing how the error was controlled, it is necessary to distinguish

between the goals of PFMG and PFAS. Asymptotically, PFMG and PFAS behave the same,

because once PFMG has reached level M it performs essentially like PFAS. The purpose

-M
of PFMG is to obtain quickly an approximation u which satisfies the stopping

criterion (6.11), namely

To achieve this we set

PREC4 - 1, TOL - 0, ETA - 10

DELTA - 0, PREC - 0, RATIO - 1

Finally, we set MA = 30, and W4AXM - 40, though these values were of course

never reached.

PFMG includes the option of computing, jIu£ - u11. and Hlu£ - uIIG , where u is

the exact solution. For the dam problem, it is possible to compute u analytically

using elliptic integrals (Cryer [1976]) but this has not yet been done: we therefore

took u to be the most accurate approximation known to us, namely the approximation

-7
u computed in double precision on a (128 + 1) x (192 + 1) grid as described in

Section 4. For problem (5.3), (5.4) the exact solution is given by (5.4).

We first performed a number of experiments with M - 2,3,4, and 5:

1. T-extrapolation (with p = 2) gave slightly worse results for the dam problem

and problem (5.3), (5.4).

2. In contrast to our experience with PFAS, the use of modification 6 had only a

slight effect.

3. It was thought that convergence might be improved by multiplying the difference

Vu (x) by h for points x near the free boundary before computing lIvu (x) G . This

was implemented as a subroutine RELAX1 but was found to have negligible effect.

All the results given below are for the case of no T-extrapolation (ITAU = 0) and

no modification (NINTSW = NRESSW = 1)

-43-

The results for the dam problem for different values of M are shown in Table 6.1.

M 2 3 4 5

GM Work Units 3.75 6.75 5.67 5.41

Execution Time (seconds) .009 .053 .131 .349

t7 II'll,, .00374 .00112 .000169 .0000623

l l M -7 IG/luIl .00334 .00109 .000147 .0000405

11vu .889 .157 .134 .0714

IITV- (IG 2.39 1.25 0.86 0.60

Table 6.1: Solution of the dam problem using PFMG.

(Run #X67247)

M-1
Since we only have estimates for T , it is not possible to obtain rigorous error

bounds. Nevertheless, it is interesting to apply the error bounds of Section 2.

Let OM denote the vector obtained by evaluating the solution u(x) on G. Then,

from (6.4), (1.1), (2.2), (2.31, (2,13), and (3.1),

so that, from Lemma 2.1,

" M - UNil 2 < 1TIM 12. (6.13)

On the other hand, from Lemma 2.2,

IluH - M112 l Ip 211V;MII2

For the dam problem, P is an upper triangular matrix with at most two nonzero

elements per row, and '4P12 <2. Thus,

Ilu - i < I) V-M (6.14)

-44-

/A"

Combining these inequalities we obtain

116M - uMII [II'+MII2 2 11 V:112]

or, equivalently,

IbM - MI- "1 ,M + 21IVuMIG] . (6.15)

Using (6.8) and (6.9), we conclude that

II0M - uMIIG
- -L IM-111 G 211VU M IG] . (6.16)

Next, we note that for the dam problem

1ah
2 (6.17)
M

where

2 2
(= + , .055 > 14/256 . (6.18)

and

hM
= 16 2

-M

Thus, finally, for the dam problem,

M--1 L 1P 11 4 2 "% . 6.19)

For example, for M - 5 we obtain, using Table 6.1, that

1O5 - uIG/I105G1G 2- [-(0.60 + 2(.071)]/(5.9 10') (6.20)

; .00036

the observed value quoted in Table 6.1 is .000040.

In Table 6.2 we repeat the computations of Table 6.1 for the problem (5.3), (5.4).

-45-

M 2 3 4 5

GM Work Units 3.75 6.75 5.672 5.414

Execution Time (seconds) .028 .103 .263 .842

lum - uM Illullo: .0147 .000985 .000266 .0000645

i- m MmilG/ 1! .0147 .00127 .000376 .0000956

u 0.5 .241 .121 .0764

Z 1G 4.18 1.62 1.10 .749

Table 6.2 Solution of problem (5.3), (5.4) using PFMG.

(Run 4X67243)

The error estimate (6.19) also holds for the problem (5.3), (5.4), since we are

using the Laplace operator on a rectangle with sides in the ratio 2:3. Applying (6.19)

we obtain

10
5- 51U /l10 11Gi i I (.75) + 2(.076) /(1.2 l04)

-14 4

.0021

the observed value quoted in Table 6.2 is .0000645.
-M

The behavior of the global error u - u can be checked using Tables 6.1 and 6.2.

From Tabl, 3-.1 w- have

17 1/3
[1-

5 7
11- f.00006.23] 1/3 i 1

r Iu r [o 1oo ____,

-2 -7 0 .03-74 1.96
-22

In Talo (.2 the e-rror in u is "abnormally large". However,

F-s 1/2
IiuuiI.000064511/ 1

u uKj h) : []3 - 21.96

These r,- uts trrorigly sur gqlst that the global error is 0(h2

-40-

The behavior of the local error T can also be checked using Tables 6.1 and 6.2.

From Table 6.1,

[14 11 / 1/3 6
[IIztI G/IIizIIG]1/3 = [.60/2.391 1/2

while, from Table 6.2,

[IIIIGiH z IG] 1 / 3 = [4.18/.7491 1/3 1/2
. 82

so that T = 0 (h q) with q e (.66,.82). This explains why T-extrapolation with p = 2

did not reduce the computational effort for these problems. The essential difficulty

is of course that the irregularity of the discrete interface makes it difficult to

obtain accurate estimates for T. In fact, T-extrapolation with p = 1 was found to

be slower than T-extrapolation with p = 2.

Finally, in Table 6.3 we repeat the computations of Table 5.3 for a tolerance

M 0 t e 5 in Table 6.1. We are thus comparing the performance6 = .0714, the value of in Table

of PFAS (with modification 6), PFMG, and projected SOR for comparable errors.

Method PFMG PFASMD (M6) Projected SOR

Work Units 5.41 9.64 56.0

I.V MII 0714 .0239 .0695

Execution Time(eod).349 .440 1.94
(seconds)

M
Table 6.3: Solution of the dam pr olem for M=5 and e = .0714

using PFASMD (modification 6), PFMG, and projected SOR.

(Runs #X67247 and #X67250)

From Table 6.3, we see that PFMG is faster than projected SOR even when only low

accuracy is required. PFAS and PFMG require comparable times, but PFMG gives much

more information and is, therefore, preferable. PFMG also uses fewer work units than

PFAS. This is significant because the number of work units used is independent of

-47-

the computer. Furthermore, on the basis of experience with many problems, it can be

said that the number of work units used does not vary greatly with the problem: for

most operators X PFMG requires only 5.4 work units.

We conclude this section with some remarks on the implementation of PFMG:

1. From Table 6.3 we see that the execution time per work unit of PFMG is greater

than the comparable quantity for PFAS by a factor

.349 .440 = 1.41

5.41 9.64

k an
This additional overhead is probably due to the cubic interpolation used by Jk-l' and

could perhaps be reduced by better programming. When £ is complicated, the additional

overhead required by PFMG is relatively much less significant: it is only with a very

simple operator like the 5-point Laplacian that the additional overhead is so expensive.

M
2. In PFMG one often need not have any storage for the finest grid G - not even

external storage. The algorithm visits G only twice: at the beginning of the last

cycle and at the end of the last cycle.

At the beginning of the cycle, the following operations are performed: inter-

polation (Jl); two e
M

projected sweeps; and residual transfer (I
-
1 and S -1

M- 1

All these operations can be made in one passage over , in such a way that only four

columns of G
M

are held in memory at one time. Each time a new column, say column i,

is created (by interpolation), a relaxation can be made in column i-l, then the second

relaxation can already be made in column i-2 and the residuals from column i-3 can

be transferred back to the coarse grid. Column i-4 can simultaneously be discarded

(i.e., replaced by column i). After this visit to
M

all the information is avail-

-Ml -1 M-1l
able (in FM-i and u) to solve the G problem to the truncation level of G

The final return to G (which would require the storage of the previous values

MM M-1
of U) is made in order to obtain the solution on G

M
rather than on G

M -
but it

does not improve its pointwise accuracy. If one is only interested in knowing some

functionals of the solution, these can be calculated without having the final solution

M -!- M-l
on G . To approximate a functional K(U), for example, one computes K(u

-
+ 'M

-

-48-

I

M-1 NM -lM uM-1 M-1 a M
where aM- = K(- (I -, is the final s tion n

N
M M-I M-l b

is the last solution on G before switching back to G . Clearly, OM can be
M -I

calculated during the above-mentioned passage on G . Note that aM is a "relative

truncation correction", similar to T It makes the approximation (M-I + -I

correct to the G
M

truncation level. (need not be a linear functional.

-49-

.1

7. CONCLUSIONS AND RECOMMENDATIONS.

1. Multigrid methods can easily be adapted to handle linear complementarity

froolems arising from free boundary problems (see Table 4.2).

2. Multigrid methods are superior to projected SOR and modified block SOR (see

TalbIs 5.3 and 6.3, and Section 4).

3. For high accuracy solutions of the discrete LCP, one should use PFASMD with

modification 6 (see Tables 5.1 and 5.2).

4. For solutions which are accurate to within truncation error one should use PFMG,

with no rodifications (see Tables 6.1, 6.2, and 6.3).

Finally, we conclude with some comments suggesting possible future applications of

multigrid methoihs to comp'ementarity problems:

1. For equalities, experience has shown that multigrid methods are as efficient

for prolems where C is nonlinear as for problems where f is linear.

2. Experience from equalities indicates that with similar efficiency (just a few

more work units) one can solve much more difficult proc'ems, such as problems in which

the coefficients of £ vary by orders of magnitude (e.g., large variations in the

diffusivity of the dam). In such cases SOR and other methods converge very slowly.

See Alcouffe et. al. (to appear).

3. The truncation error near a discrete interface cannot be reduced by using

higher order approximations because the second derivatives are usually discontinuous.

A good way to improve the approximation would be to use finer mesh sizes near the

discrete interface. This can be combined very effectively with the multigrid process

(see Brandt 11979, Section 3]). In fact, a vast improvement is expected if

T-extrapolation is used together with local refinements. Fine levels will then be

used only near the interface.

Acknowledgement.

We thank Professor R. Sacher for making available a copy of his program for solving

LCP's using the modified block SOR algorithm of Cottle and Sacher, and for his comments

on an early version of this report.

AB/CWC/ed

-50-

REFERENCES

R. ALCOUFFE, A. BRANDT, J. DENDY and J. PAINTER. The multi-grid method for
the diffusion equation with strongly discontinuous coefficients. Los
Alamos Scientific Laboratory Report, to appear.

C. BAIOCCHI. Sur un probleme a frontiere libre traduisant le filtrage de
liquides a travers des milieux poreux. Comptes Rendus Acad. Sci. Paris,
A273(1971), pp. 1215-1217.

C. BAIOCCHI. Free boundary problems and variational inequalities. Technical
Summary Report No. 1883, Mathematics Research Center, University of
Wisconsin, Madison, Wisconsin, 1978.

M. L. BALINSKI and R. W. COTTLE. Complementarity and Fixed Point Problems.
North-Holland, Amsterdam, 1978.

J. BEAR. Dynamics of Fluids in Porous Media. American Elsevier, New York,
1972.

A. BRANDT. Multi-level adaptive solutions to boundary value problems. Math.
Computation, 31(1977), pp. 333-390.

A. BRANDT. Multi-level adaptive techniques (MLAT) for singular-perturbation
problems. In Numerical Analysis of Singular Perturbation Problems, P.
W. Hemker and J. J. H. Miller (editors). New York, Academic Press 1979,
pp. 53-142.

A. BRANDT and N. DINAR. Multi-grid solutions to elliptic flow problems.
Symposium on Numerical Solution of Partial Differential Equations, S. V.
Parter, ed. New York, Academic Press, 1979, pp. 53-147.

F. BREZZI and G. SACCHI. A finite element approximation of variational
inequalities related to hydraulics. Calcolo, 13(1976), pp. 259-273.

J. CEA, R. GLOWINSKI, and J. C. NEDELEC. Application des methodes
d'optimisation, de differences et d'elements finis a l'analyse numerique
de la torsion elasto-plastique d'une barre cylindrique. In
Approximation et Methodes Iteratives de Resolution d'Inequations
Variationelles et de Problemes Non Lineaires. Cahier de I'IRIA, No. 12,
1974, pp. 7-138.

G. CIMATTI. On a problem of the theory of lubrication governed by a
variational ineuqality. Applied Math. and Optimization, 3(1977),
pp. 227-242.

R. W. COTTLE. Computational experience with large-scale liinear
complementarity problems. Technical Report No. SOL 74-13, Systems
Optimization Laboratory, Department of Operations Research, Stanford
University, 1974.

R. W. COTTLE, F. GIANNESSI, and J. L. LIONS (editors). Variational
Inequalities and Complementarity Problems. John Wiley, New York, 1980.

R. W. COTTLE, G. H. GOLUB, and R. S. SACHER. On the solution of large,
structured linear complementarity problems: the block partitioned
case. Applied Mathematics and Optimization 4(1978), pp. 347-363.

-51-

4C'

R. W. COTTLE and R. S. SACHER. On the solution of large, structured linear

complementarity problems: the tridiagonal case. Applied Mathematics

and Optimization, 3(1977), pp. 321-340.

C. W. CRYER. The solution of a quadratic programming problem using systematic

overrelaxation. SIAM J. Control, 9(1971), pp. 385-392.

C. W. CRYER. The method of Christopherson for solving free boundary problems

for infinite journal bearings by means of finite differences. Math.

Comp., 25(1971a), pp. 435-444.

C. W. CRYER. A survey of steady state porous flow free boundary problems.

Technical Summary Report No. 1657, Mathematics Research Center,

University of Wisconsin, Madison, Wisconsin, 1976.

C. W. CRYER. A bibliography of free boundary problems. Technical Summary
Report No. 1793, Mathematics Research Center, University of Wisconsin,
Madison, Wisconsin, 1977.

C. W. CRYER. The solution of the axisymmetric elastic-plastic torsion of a

shaft using variational inequalities. Technical Summary Report No.

1948, Mathematics Research Center, University of Wisconsin, Madison,

Wisconsin, 1979. To appear in J. Math. Anal. Appl.

C. W. Cryer. Successive overrelaxation methods for solving linear
complementarity problems arising from free boundary problems.

Proceedings, Seminar on Free Boundary Problems, Pavia, October 1979a, to
appear.

G. DUVAUT and J. L. LIONS. Inequalities in Mechanics and Physics. Dunod,

Paris, 1976.

R. S. FALK. Error estimates for the approximation of a class of variational
inequalities. Math. Computation, 28(1974), pp. 963-971.

R. GLOWINSKI. La methode de relaxation. Rendiconti di Matematica, 14 (1971),

56 pages.

R. GLOWINSKI. Finite elements and variational inequalities. Technical
Summary Report No. 1885, Mathematics Research Center, University of
Wisconsin, 1978.

R. GLOWINSKI, J. L. LIONS, and R. TREMOLIERES. Analyse Numerique des
Inequations Variationnelles. Dunod, Paris, 1976.

D. KINDERLEHRER and G. STAMPACCHIA. An Introduction to Variational
Inequalities and their Applications. Academic Press, New York, 1980.

H. LANCHON. Torsion elastoplastique d'un arbre cylindrique de section

simplement ou multiplement connexe. J. Mecanique, 13(1974),
pp. 267-320.

J. A. NITSCHE. L-infinity convergence of finite element approximations. In
Mathematical Aspects of the Finite Element Method, Rome Italy, 1975.

R. S. Varga. Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs,

N. J., 1962.

-52-

1* C
2. C

3. C THIS PROGRAM SOLVES THE PROBLEM OF POROUS FLOW THROUGH A
4. C RECTANGULAR DAM OF HEIGHT Y1 AND WIDTH A.
5. C THE RESERVOIR TO THE RIGHT OF THE DAM IS OF HEIGHT Y2.
6. C

7. C WRITTEN BY ACHI BRANDT AND COLIN CRYER AUGUST 1980
8. C

9. C ADDITIONAL PARAMETERS USED ARE:
10. C NXO THE NUMBER OF GRID INTERVALS IN THE X-DIRECTION IN
11. C THE COARSEST GRID, GRID 1.
12. C NYO THE NUMBER OF GRID INTERVALS IN THE Y-DIRECTION IN

13. C THE COARSEST GRID, GRID 1.
14. C HO THE GRID SIZE IN THE COARSEST GRID, GRID 1.

15. C M THE NUMBER OF GRIDS TO BE USED.
16. C TOL THE TOLERANCE. COMPUTATION TERMINATES IF THE RESIDUAL

17. C ON THE FINEST GRID IS LESS THAN TOL.
18. C WMAX THE MAXIMUM NUMBER OF WORK UNITS PERMITTED ON THE
19. C FINEST GRID. COMPUTATION TERMINATES WHEN WMAX IS EXCEEDED.
20. C IN PRACTICAL CASES, ONE SETS WMAX=30. IN THE PRESENT WORK,
21. C WE OFTEN SET WMAX=100 SO AS TO OBSERVE THE ASYMPTOTIC
22. C BEHAVIOR OF THE ALGORITHM.

23. C MPRINT THE GRID TO BE PRINTED AT THE END OF THE COMPUTATION.
24. C THAT IS, WE PRINT THE MPRINT SUBSET OF THE FINAL ANSWER
25. C ON THE GRID M.

26. C NQSIZE SIZE OF ARRAY Q
27. C MUST BE CHANGED FOR LARGE PROBLEMS BY EDITING PROGRAM
28. C =18000 FOR DAM PROBLEM M=2,3,4,5,6

29. C =70000 FOR DAM PROBLEM M=7
30. C

31. C
32. C ALL THE PARAMETERS ARE SET IN THE PROGRAM, BUT THEIR VALUES
33. C CAN BE RESET ON THE NAMELIST INPUT CARD WHICH IS READ IN

34. C BY THE PROGRAM.
35. C THE NAMELIST CARD MUST BE PROVIDED AS INPUT.

36. C
37. C THE PROGRAM SETS UP STORAGE FOR THE SOLUTIONS AND RIGHT
38. C HAND SIDES.
39. C THE SOLUTIONS ARE STORED IN ARRAYS 1 TO M.
40. C THE RIGHT HAND SIDES (OR, SOMETIMES THE RESIDUALS
41. C ARE STORED IN ARRAYS M+I TO 2*M.
42. C

43. C THIS PROGRAM WAS USED TO COMPUTE THE RESULTS IN FIGURE 3.2
44. C AND TABLES 4.1 AND 4.2 OF THE MRC REPORT.

45. C

46. C
47. IMPLICIT DOUBLE PRECISION (A-HO-Z)
48. EXTERNAL G,F

49. COMMON /PRBDAT/Y1,Y2,A

50. COMMON /QDAT/NQSIZE,NQERR
51 . NAMELIST /INDAT/Y1 ,Y2,A,NXO,NYO,HO,M,TOL,WMAX,MPRINT

52. NQSIZE=18000

53. Y1=24

54. Y2=4

55. A=16
56. NXO=4
57. NYOi6

-53-

= APP-A-PFAS

58. H0=4.

59. M=3

60 TOL=0.

61. WMAX=30.

62. MPRINT=l

63. READ(5,INDAT)

64. WRITE(6,INDAT)

65. C SET TIME TO ZERO

66. CALL URTIMS(0.0)

67. CALL PFAS(NXO,NYO,HO,M,TOL,WMAX,G,F)

68. C PRINT ELAPSED TIME

69. T=URTIMG('ELAPSED TIME')

70. CALL SOLPRT(M,MPRINT)

71. STOP

72. END

73. C

74. C

75. DOUBLE PRECISION FUNCTION F(X,Y)

76. C DAM PROBLEM

77. C THIS SUBROUTINE COMPUTES THE RIGHT HAND SIDE OF THE

80. C GOVERNING POISSON EQUATION DEL*DEL U=F.

79. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

80. F=l.

81. RETURN

82. END

83. C

84. C

85. DOUBLE PRECISION FUNCTION G(X,Y)

86. C DAM PROBLEM

87. C THIS SUBROUTINE COMPUTES THE BOUNDARY DATA AND THE

88. C INITIAL APPROXIMATION TO THE SOLUTION U.

89. C THE INITIAL APPROXIMATION IS OBTAINED BY LINEAR INTERPOLATION

90. C IN THE X-DIRECTION BETWEEN THE GIVEN BOUNDARY DATA.

91. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

92. COMMON /PRBDAT/Yl,Y2,A

93. G1=.5*(Yl-Y)**2

94. G2=.5*(Y2-Y)**2

95. IF(Y.GE.Y2) G2=0
96. G=(Gl*(A-X)+ G2*X)/A

97. RETURN

98. END

99. C

100. C

101. SUBROUTINE PFAS(NXO,NYO,HO,M,TOL,WMAX,U1,F)

102. C THIS SUBROUTINE IS THE MAIN MULTIGRID SUBROUTINE.

103. C IT INITIALIZES THE PROBLEM, AND REPEATEDLY CALLS

104. C THE SUBROUTINES RELAX,RESCAL,PUTU,CORSRE,SUBTRC,AND INTADD.

105. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

106. COMMON /QDAT/NQSIZE,NQERR

107. EXTERNAL U1,F

108. DIMENSION EPS(10)

109. C

110. C

111. C SET UP ARRAYS 1 TO M FOR THE SOLUTIONS

112. C AND ARRAYS M+1 TO 2*M FOR THE RIGHT HAND SIDES,

113. C AND CHECK THAT Q ARRAY IS LARGE ENOUGH

114. NQERR=O

-54-

APPX-A-PFAS

115. DO 1 K-1,M

116. K2-2"*(K-1)
117. CALL GRDFN(K,NXO*K2+1,NY0*K2+1,HO/K2)

118. 1 CALL GRDFN(K+M,NXO*K2+1,NY0*K2+1,HO/K2)

119. PRINT 10,NQSIZE
120. 10 FORMAT(' SIZE OF Q ARRAY I , 110)
121. IF(NQERR.EQ.0)GOTO 12

122. PRINT 11,NQERR

123. 11 FORMAT(' *** ERROR IN GRDFN *** ARRAY Q NOT LARGE ENOUGH '*',

124. * /,' ARRAY Q SIZE SHOULD BE AT LEAST 1', 10)

125. STOP
126. 12 CONTINUE
127. C
128. C
129. C INITIALIZE
130. EPS(M) TOL
131. K=M

132. WUiO
133. CALL PUTF(M,U1,0)

134. CALL PUTF(2*M,F,2)
135. ETA=.5
136. DELTA=.15
137. C
138. C START OF MAIN LOOP IN WHICH ONE MODIFIED GAUSS-SEIDEL
139. C SWEEP ON GRID K IS MADE.
140. C

141. 5 ERR1I.E30
142. 3 ERRP=ERR
143. CALL RELAX(K,K+M,ERR)
144. IF (WU .LE. 0) ERRBEGfERR
145. WU=WU+4,**(K-M)
146. WRITE(6,4)K,ERR,WU

147. 4 FORMAT(' LEVEL',12,' RESIDUAL NORM=', D10.3,' WORK-', F7.3)

148. IF(ERR.LT.EPS(K))GOTO 2
149. IF (WU.GE.WMAX)RETURN
150. IF(K.EQ.1.OR.ERR/ERRP.LT. ETA)GO TO 3

151. C
152. C GO TO COARSER GRID

153. IF(K.NE.M .OR. WU.LE.3) GOTO 92
154. FMU=0.0
155. IF(ERR.GT.0) FMUf(ERR/ERRBEG)**(I.D0/(WU-1))
156. PRINT 91,FMU
157. 91 FORMAT(' ', 20('*'),'END OF CYCLE',20('*'),IMU - ',FB.4)

158. 92 CONTINUE
159. CALL RESCAL(K,K+M,K+M-1)
160. EPS(K-1)=DELTA*ERR

161. KfK-1

162. CALL PUTU(K+1,K)
163. CAIL CORSRE(K,K+M)
164. GOTO 5
165. C
166. C GO TO FINER GRID
167. 2 IF (K.EQ.M)RETURN

168. CALL SUBTRC(K+1,K)
169. CALL INTADD(K,K+I)
170. KfK+1
171. GOTO 5

-55-

APPX-A-PFAS

172. END

173. C

174. C

175. SUBROUTINE CORSRE(K,KRHS)

176. C APPLIES THE DIFFERENCE OPERATOR ON GRID K

177. C TO THE GRID FUNCTION IN ARRAY K, AND ADDS THE RESULT TO THE

178. C VALUES IN ARRAY KRHS.

179. C KRHS KRHS K K,0

180. C B =R + A U

181. C

182. C THE RESULT IS STORED IN ARRAY KRHS.

183. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

184. COMMON Q(18000),IST(200),IRHS(200)

185. CALL KEY(KIST,II,JJH)

186. CALL KEY(KRHSIRHS,II,JJ,H)

187. I1=II-1

188. Jl=JJ-1

189. DO 1 I-2,I1

190. IR=IRHS(I)
191. IO=IST(I)

192. IM=IST(I-1)

193. IP=IST(I+)

194. DO 1 J=2,J1

195. A=-Q(IR+J)-Q(IO+J+1)-Q(IO+J-1)-Q(IM+J)-Q(IP+J)

196. 1 Q(IR+J)=-A-4.*Q(IO+J)

197. RETURN

198. END

199. C

200. C

201. SUBROUTINE GRDFN(N,I?4AX,JMAX,HH)

202. C SETS UP ARRAY N.

203. C IMAX THE DIMENSION IN THE X DIRECTION

204. C JMAX THE DIMENSION IN THE Y DIRECTION

205. C HH THE GRID SIZE

206. C THE ARRAY NST CONTAINS THE STARTING ADDRESSES OF THE ARRAYS.

207. C THE ARRAY IMX CONTAINS THE MAXIMUM ROW NUMBERS

208. C THE ARRAY JMX CONTAINS THE MAXIMUM COL NUMBERS

209. C THE ARRAY H CONTAINS THE GRID SIZES.

210. C

211. IMPLICIT DOUBLE PRECISION (A-HO-Z)

212. COMMON/GRD/NST(20),IMX(20) ,JMX(20) ,H(20)

213. COMMON /QDAT/NQSIZE,NQERR

214. DATA IQ/1/

215. NST(N)=IQ

216. IMX(N)=IMAX

217. JMX(N)=JMAX

218. H(N)=HH

219. IQ=IQ+IMAX*JMAX

220. IF(IQ.LE.NQSIZE+) RETURN

221. NQERR=IQ-1

222. END

223. C

224. C

225. SUBROUTINE INTADD(KCKF)

226. C LINEARLY INTERPOLATES CORRECTION ON COARSE GRID KC

227. C AND ADDS TO SOLUTION ON GRID KF.

228. C KF KF KC KF KF

-56-

- ----- O i

APPX-A-PFAS

229. C U PHI(I W + U ,U

230. C KC
231. C
232. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
233. COMMON Q(18000),ISTC(200),ISTF(200)
234. CALL KEY(KC,ISTC,IIC,JJCHC)
235. CALL KEY(KF,ISTF,IIFJJFHF)
236. DO I IC=2,IIC

237. IF=2*IC-1
238. JF=1

239. IFO=ISTF(IF)
240. IFM=ISTF(IF-)
241. ICO=ISTC(IC)
242. ICM=ISTC(IC-I)

243. DO 1 JC=2,JJC
244. JF=JF+2
245. A-.5*(Q(ICO+JC)+Q(ICO+JC-1))

246. AM=.5*(Q(ICM+JC)+Q(ICM+JC-1))
247. Q(IFO+JF) = Q(IFO+JF)+Q(ICO+JC)
248. Q(IFM+JF) = Q(IFM+JF)+.5*(Q(ICO+JC)+Q(ICM+JC))
249. Q(IFO+JF-1)=Q(IFO+JF-1)+A
250. 1 Q(IFM+JF-1) = Q(IFM+JF-I)+.5*(A+AM)
251. RETURN
252. END
253. C
254. C
255. SUBROUTINE KEY(K,IST,IMAX,JMAX,HH)

256. C RECOVERS THE INFORMATION ABOUT ARRAY K SET UP BY
257. C THE SUBROUTINE GRDFN.
258. C THE VALUE OF THE GRID FUNCTION AT THE POINT (I,J)
259. C IS ADDRESSED AS U(IST(J)+I).

260. C
261. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
262. COMMON/GRD/NST(20),IMX(20),JMX(20),H(20)

263. DIMENSION IST(1)
264. IMAX=IMX(K)
265. JMAX=JMX(K)
266. IS=NST(K)-JMAX-1
267. DO 1 I=1,IMAX
268. IS=IS + JMAX
269. 1 IST(I)=IS
270. HH=H(K)
271. RETURN
272. END
273. C
274. C

275. SUBROUTINE PUTF(KF,NH)
276. C INSERTS THE VALUES OF THE FUNCTION F

277. C EVALUATED AT THE POINTS OF GRID K

278. C AND MULTIPLIED BY GRIDSIZE**NH

279. C INTO THE ARRAY K.

280. C
281. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

282. COMMON Q(18000),IST(600)
283. CALL KEY (K,IST,II,JJ,H)
284. H2=H**NH

285. DO 1 I=1,II

-57-

APPX-A-PFAS--

286. DO 1 J=1,JJ

287. X=(I-1)*H

288. Y=(J-1)*H

289. 1 Q(IST(I)+J)=F(X,Y)*H2

290. RETURN

*291. END
292. C

293. C

294. SUBROUTINE PUTU(KF,KC)
295. C THIS SUBROUTINE INJECTS THE SOLUTION ON THE FINE GRID

*I296. C KF INTO THE COARSE GRID KC.

297. C KC,0 KC 1K'

298. C U I1 U
299. C KF

300. C

301. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

302. COMMON Q(18000),IUF(200),IUC(200)

303. CALL KEY(KFIUF,IIF,JJF,HF)

*304. CALL KEY(KC,IUC,IICJJCHC)

305. DO 1 IC=1,IIC

306. IF=2*IC-1

307. IFO=-IUFCIF)

308. ICO=IUC(IC)

309. JF=-1

310. DO 1 JC=1,JJC

311. JF=JF+2

312. Q(ICO+JC)= Q(IFO+JF)

313. 1 CONTINUE

*314. RETURN

315. END

316. C

*317. C

318. SUBROUTINE RELAX(K,KRHS,ERR)

319. C CARRIES OUT ONE MODIFIED GAUSS-SEIDEL

320. C SWEEP ON THE GRID K WITH RIGHT HAND SIDE IN ARRAY KRI1S.

321. C RETURNS WITH ERR=- G-NORM OF THE DYNAMIC RESIDUALS

322. C
323. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

324. COMMON Q(18000),IST(200),IRHS(200)

325. CALL KEY(K,ISTII,JJ,H)

326. CALL KEY(KRHS,IRHS,II,JJ,H)

327. Il1II1

328. J1=JJ-1

329. ERR=0.

330. DO 1 I-2,11

331. IR=IRHS(I)

332. IO015T(I)

333. IM=IST(I-1)

334. IP=IST(I+1)

335. DO 1 J=2,J1

336. A=Q(IR+J)-Q(IO+J+1)-Q(IO+J-1)-Q(IM+J)-Q(IP+J)

*337. QT=-.25*A

338. QN=MAX(0.0,QT)

339. ERR=ERR+(QN-Q(IO+J))-*2

340. 1 Q(IO+J)=QN

*341. ERR=SQRT(ERR)/H

342. RETURN

-58-

r! APPX-A-PFAS...

343. END

344. C
345. C
346. SUBROUTINE RESCAL(KF,KRF,KRC)

347. C CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE
348. C IN ARRAY KRF , AND INJECTS INTO ARRAY KRC.
349. C BEFORE INJECTION, THE RESIDUAL IS SCALED

350. C BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE

351. C FACT THAT THE GRID SIZE ON GRID KF IS HALF THE

352. C GRIDSIZE ON GRID KC.
353. C KRC KC KRF KF KF

354. C R 4*S (B -A U
355. C KF
356. C
357. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
358. COMMON Q(18000),IUF(200),IRF(200),IRC(200)
359. CALL KEY(KF,IUF,IIF,JJF,HF)
360. CALL KEY(KRF,IRF,IIF,JJF,HF)
361. CALL KEY(KRC,IRC,IIC,JJCHC)
362. IIC1=IIC-l
363. JJCI=JJC-1
364. DO 1 IC=2,IIC1
365. ICR=IRC(IC)
366. IF=2*IC-1
367. JF=I
368. IFR=IRF(IF)
369. IFO=IUF(IF)
370. IFM=IUF(IF-1)
371. IFP=IUF(IF+I)

372. DO 1 JC=2,JJC1
373. JF=JF+2
374. S=Q(IFO+JF+1)+Q(IFO+JF-1)+Q(IFM+JF)+Q(IFP+JF)
375. 1 Q(ICR+JC)=4.*(Q(IFR+JF)-S+4.*Q(IFO+JF))

376. RETURN
377. END
378. C
379. C

380. SUBROUTINE SOLPRT(M,MPRINT)

381. C PRINTS THE ARRAY M ON THE SUBARRAY MPRINT.

382. C
383. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
384. COMMON Q(18000),IST(600)
385. DIMENSION QTEM(100)

386. CALL KEY (M,IST,II,JJ,H)
387. INTERV=2**(M-MPRINT)
388. DO 20 J=JJ,1,-INTERV
389. L=0
390. DO 10 I=1,II,INTERV
391. C X AND Y ARE NOT PRINTED HERE, BUT ARE COMPUTED IN

392. C CASE A LATER VERSION NEEDS THEM.
393. X-(I-1)*H

394. Y=(J-1)*H
395. LfL+l
396. QTEM(L)-Q(IST(I)+J)
397. 10 CONTINUE

398. PRINT *,(QTEM(LL),LL=I,L)
399. 20 CONTINUE

-59-

APPX-A-PFAS

400. RETURN
401. END
402. C
403. C
404. SUBROUTINE SUBTRC(KF,KC)
405. C THIS SUBROUTINE COMPUTES THE VALUE INJECTED FROM GRID ICF TO

406. C GRID KC AND SUBTRACTS IT FROM. THE SOLUTION ON GRID KC.
407. C KC KC KC KF
408. C W U - I U
409. C KF
410. C
411. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

412. COMMON Q(18000),IUF(200'J,IUC(200)
413. CALL KEY(KF,IUF,IIF,JJF,HF)
414. CALL KEY(KC,IUC,IIC,JJC,HC)
415. DO 1 IC1l,IIC
416. IF-2*IC-1
417. IFO=IUF(IF)
418. ICO=IUC(IC)
419. JF=-1
420. DO 1 JC-1,JJC
421. JF-JF+2
422. Q(ICO+JC)=Q(ICO+JC)-Q(IFO+JF)
423. 1 CONTINUE
424. RETURN
425. END
426. C
427. C

-60-

1 * ==m APX-B-PFASMD:==::

2. C

3. C THIS PROGRAM SOLVES THE PROBLEM OF POROUS FLOW THROUGH A

4. C RECTANGULAR DAM OF HEIGHT Y1 AND WIDTH A.

5. C THE RESERVOIR TO THE RIGHT OF THE DAM IS OF HEIGHT Y2.
6. C

7. C WRITTEN BY ACHI BRANDT AND COLIN CRYER AUGUST 1980
8. C

9. C THIS PROGRAM WAS USED TO COMPUTE THE RESULTS IN
10. C SECTION 5 AND TABLE 6.4 OF THE MRC REPORT.

11. C
12. C ADDITIONAL PARAMETERS USED ARE:

13. C NXO THE NUMBER OF GRID INTERVALS IN THE X-DIRECTION IN

14. C THE COARSEST GRID, GRID 1.
15. C NYO THE NUMBER OF GRID INTERVALS IN THE Y-DIRECTION IN

16. C THE COARSEST GRID, GRID 1.
17. C HO THE GRID SIZE IN THE COARSEST GRID, GRID 1.

18. C M THE NUMBER OF GRIDS TO BE USED.

19. C TOL THE TOLERANCE. COMPUTATION TERMINATES IF THE RESIDUAL

20. C ON THE FINEST GRID IS LESS THAN TOL.

21. C WMAX THE MAXIMUM NUMBER OF WORK UNITS PERMITTED ON THE

22. C FINEST GRID. COMPUTATION TERMINATES WHEN WMAX IS EXCEEDED.

23. C IN PRACTICAL CASES, ONE SETS WMAX=30. IN THE PRESENT WORK,

24. C WE OFTEN SET WMAX=100 SO AS TO OBSERVE THE ASYMPTOTIC

25. C BEHAVIOR OF THE ALGORITHM.

26. C MPRINT THE GRID TO BE PRINTED AT THE END OF THE COMPUTATION.

27. C THAT IS, WE PRINT THE MPRINT SUBSET OF THE FINAL ANSWER

28. C ON THE GRID M.

29. C NQSIZE SIZE OF ARRAY Q

30. C MUST BE CHANGED FOR LARGE PROBLEMS BY EDITING PROGRAM

31. C =18000 FOR DAM PROBLEM M=2,3,4,5,6

32. C =70000 FOR DAM PROBLEM M=7

33. C

34. C SWITCHES

35. C

36. C NFGSW =1 DAM PROBLEM

37. C =2 PROBLEM (5.3),(5.4).

38. C

39. C
40. C NINTSW =1 INJECTION. SUBROUTINE INTADD

41. C =2 MODIFICATION #6. SUBROUTINE INTADM

42. C CORRECTION ONLY ADDED WHEN U.NE.0. SEE (5.15).

43. C =3 MODIFICATION #1. SUBROUTINE INTAPR

44. C PHI=MAX(0,U)

45. C
46. C NPUTSW =1 INJECTION. SUBROUTINES PUTU AND SUBTRC

47. C =2 MODIFICATION #2. SUBROUTINES PUTUNN AND SUBTNN.

48. C TRANSFER 0 IF ANY NEIGHBOR ZERO.

49. C

50. C NRELSW =1 NORMAL RELAXATION. SUBROUTINE RELAX
51. C =2 MODIFICATION #3. SUBROUTINE RELXFR

52. C VALUES OF U CHANGED ON GRID

53. C K<M ONLY IF U>0 ON GRID M.

54. C

55. C NRESSW =1 INJECTION. SUBROUTINE RESCAL
56. C =2 MODIFICATION #5. SUBROUTINE RESCL1

57. C USES WEIGHTED RESIDUALS NEAR BOUNDARY.

-61-

APX-B-PFASMD

58. C RESIDUALS WITH U<0 SET EQUAL TO ZERO

59. C =3 MODIFICATION #4. SUBROUTINE RESCAV
60. C USES WEIGHTED RESIDUALS

61. C
62. C ALL THE PARAMETERS ARE SET IN THE PROGRAM, BUT THEIR VALUES
63. C CAN BE RESET ON THE NAMELIST INPUT CARD WHICH IS READ IN
64. C BY THE PROGRAM.

65. C THE NAMELIST CARD MUST BE PROVIDED AS INPUT.

66. C
67. C THE PROGRAM SETS UP STORAGE FOR THE SOLUTIONS AND RIGHT
68. C HAND SIDES.
69. C THE SOLUTIONS ARE STORED IN ARRAYS I TO M.
70. C THE RIGHT HAND SIDES (OR, SOMETIMES THE RESIDUALS
71. C ARE STORED IN ARRAYS M+1 TO 2*M.
72. C

73 . C
74. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
75. EXTERNAL G,F

76. COMMON /PRBDAT/Y,,Y2,A,R

77. COMMON /QDAT/NQSIZE,NQERR
78. COMMON /SWDAT/NFGSW,NINTSWNPUTSW,NRELSW,NRESSW

79. NAMELIST /INDAT/Yl,Y2,A,R,NXO,NYO,HO,M,TOL,WMAX, MPRINT
80. ,NFGSW,NINTSW,NPUTSW,NRELSW,NRESSW

81. CHARACTER ITITLE(80)
82. C

83. C READ IN AND PRINT TITLE CARDS
84. C FINISH READING TITLE WHEN LAST CARD IS BLANK
85. C FINISH RUN WHEN TITLE CARD IS BLANK

86. NC=0
87. 5 READ 10,(ITITLE(I),I=1,80)

88. 10 FORMAT(8OA1)
89. NC=NC+1
90. PRINT 11,(ITITLE(I),I=1,80)

91. 11 FORMAT(1H ,80AI)

92. DO 12 I=1,80
93. IF (ITITLE(I).NE.' ')GOTO 5
94. 12 CONTINUE

95. IF(NC.EQ.1) STOP

96. C
97. NQSIZE=18000
98. NFGSW=l

99. NINTSW=1

100. NPUTSW=1

101. NRELSW=1
102. NRESSW=1

103. Y1=24

104. Y2=4

105. A=16

106. R=32.DO/I 5.DO
107. NX0=4

108. NY0=6

109. H0=4.

110. M=3

111. TOL=2.D-8

112. WMAX=30.

113. MPRINT=l

114. READ(5,INDAT)

-62-

APX-B-PFASMD

115. WRITE(6,INDAT)

116. C PRINT MODIFICATION NUMBERS

117. PRINT 100

118. 100 FORMAT('0 *** THE FOLLOWING MODIFICATIONS WERE USED *
119. IF(NINTSW.EQ.2) PRINT 106
120. IF(NINTSW.EQ.3) PRINT 101
121. IF(NPUTSW.EQ.2) PRINT 102

122. IF(NRELSW.EQ.2) PRINT 103
123. IF(NRESSW.EQ.2) PRINT 105

124. IF(NRESSW.EQ.3) PRINT 104
125. 101 FORMAT('0', 'MODIFICATION NUMBER 1')
126. 102 FORMAT('0', 'MODIFICATION NUMBER 2')
127. 103 FORMAT('0', 'MODIFICATION NUMBER 3')
128. 104 FORMAT('0', 'MODIFICATION NUMBER 4')
129. 105 FORMAT('0', 'MODIFICATION NUMBER 5')

130. 106 FORMAT('0', 'MODIFICATION NUMBER 6')
131. PRINT 110

132. 110 FORMAT(' *************)
133. C SET TIME TO ZERO
134. CALL URTIMS(0.0)

135. CALL PFASMD(NXO,NYO,HO,M,TOL,WMAX,GF)

136. C PRINT ELAPSED TIME
137. T=URTIMG('ELAPSED TIME')

138. CALL SOLPRT(M,MPRINT)

139. STOP

140. END
141. C

142. C
143. DOUBLE PRECISION FUNCTION F(X,Y)

144. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
145. COMMON /PRBDAT/Y1,Y2,A,R

146. COMMON /SWDAT/NFGSW,NINTSW,NPUTSW,NRELSW,NRESSW

147. C THIS SUBROUTINE COMPUTES THE RIGHT HAND SIDE OF THE
148. C GOVERNING POISSON EQUATION DEL*DEL U=F.

149. GOTO(1,2),NFGSW
150. C

151. C DAM PROBLEM

152. 1 CONTINUE

153. F=I.
154. RETURN

155. C
156. C PROBLEM OF SECTION 5: (5.3) AND (5.4)

157. 2 CONTINUE

158. D=2.5*R
159. A=DMAX1(0.D0,D-R*X-Y)

160. B-X+Y
161. C=2*(R**2+1)

162. F=(C-2.*A*A)*DCOS(B) +4*(R+1)*A*DSIN(B)+2*C

163. RETURN

164. END

165. C

166. C
167. DOUBLE PRECISION FUNCTION G(X,Y)
168. C THIS SUBROUTINE COMPUTES THE BOUNDARY DATA AND THE
169. C INITIAL APPROXIMATION TO THE SOLUTION U.

170. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
171. COMMON /PRBDAT/YI,Y2,A,R

-63-

APX-B-PFASMD

172. COMMON /SWD T/NFGSW,NINTSW,NPUTSW,NRELSW,NRESSW

173. GOTO(1,2),NFGSW

174. C

175. C DAM PROBLEM

176. C THE INITIAL APPROXIMATION IS OBTAINED BY LINEAR INTERPOLATION

177. C IN THE X-DIRECTION BETWEEN THE GIVEN BOUNDARY DATA.

178. 1 CONTINUE

179. G1=.5*(Yl-Y)**2

180. G2=.5*(Y2-Y)**2

181. IF(Y.GE.Y2) G2=0

182. G=(G1*(A-X)+ G2*X)/A

183. RETURN

184. C
185. C PROBLEM OF SECTION 5: (5.3) AND (5.4)
186. C INITIAL APPROXIMATION IS A PERTURBATION OF EXACT SOLUTION

187. 2 CONTINUE

188. D=2.5*R

189. A=DMAX1(0.D0,D-R*X-Y)

190. B=X+Y

191. G=A*A*(DCOS(B)+2)

192. G=G+X*(3-X)*Y*(2-Y)*10

193. RETURN

194. END

195. C

196. C

197. SUBROUTINE PFASMD(NXO,NYO,HO,MTOL,WMAX,U1,F)
198. C THIS SUBROUTINE IS THE MAIN MULTIGRID SUBROUTINE.

199. C IT INITIALIZES THE PROBLEM, AND REPEATEDLY CALLS

200. C THE SUBROUTINES RELAX,RESCAL,PUTU,CORSRE,SUBTRC,AND INTADD.

201. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

202. COMMON /QDAT/NQSIZE,NQERR

203. EXTERNAL U1,F

204. DIMENSION EPS(10)

205. C

206. C

207. C SET UP ARRAYS 1 TO M FOR THE SOLUTIONS

208. C AND ARRAYS M+1 TO 2*M FOR THE RIGHT HAND SIDES,

209. C AND CHECK THAT Q ARRAY IS LARGE ENOUGH

210. NQERR=O

211. DO I K=I,M
212. K2=2**(K-1)

213. CALL GRDFN(K,NXO*K2+1,NYO*K2+1,HO/K2)

214. 1 CALL GRDFN(K+M,NXO*K2+1,NYO*K2+1,HO/K2)

215. PRINT 10,NQSIZE

216. 10 FORMAT(' SIZE OF Q ARRAY = ', I10)

217. IF(NQERR.EQ.0)GOTO 12

218. PRINT 11,NQERR

219. 11 FORMAT(' *** ERROR IN GRDFN *** ARRAY Q NOT LARGE ENOUGH *

220. * /,' ARRAY Q SIZE SHOULD BE AT LEAST I', 10)

221. STOP

222. 12 CONTINUE

223. C

224. C

225. C INITIALIZE

226. EPS(M)=TOL

227. K=M

228. WU=0

-64-

APX-B-PFASMD ===

229. CALL PUTF(M,U1,0)

230. CALL PUTF(2*M,F,2)

231. ETA=.5

232. DELTA=.15
233. C

234. C START OF MAIN LOOP IN WHICH ONE GAUSS-SEIDEL PROJECTED

235. C SWEEP ON GRID K IS MADE.

236. C
237. 5 ERR=1.E30

238. 3 ERRP=ERR
239. CALL RELSW(K,K+M,ERR)

240. IF(WU .LE. 0) ERRBEG=ERR

241. WU=WU+4.**(K-M)

242. WRITE(6,4)K,ERR,WU

243. 4 FORMAT(' LEVEL',12,' RESIDUAL NORM=', D10.3,' WORK=', F7.3)

244. IF(ERR.LT.EPS(K))GOTO 2

245. IF (WU.GE.WMAX)RETURN

246. IF(K.EQ.1.OR.ERR/ERRP.LT. ETA)GO TO 3

247. C

248. C GO TO COARSER GRID

249. IF(K.NE.M .OR. WU.LE.3) GOTO 92
250. FMU=0.0

251. IF(ERR.GT.0) FMU=(ERR/ERRBEG)**(1.D0/(WU-1))

252. PRINT 91,FMU

253. 91 FORMAT(' ', 20('*'),'END OF CYCLE',20('*'),'MU= ',F8.4)

254. 92 CONTINUE

255. CALL RESSW(K,K+M,K+M-1)

256. EPS(K-1)=DELTA*ERR

257. K=K-1
258. CALL PUTSW(K+1,K)

259. CALL CORSRE(K,K+M)

260. GOTO 5

261. C
262. C GO TO FINER GRID

263. 2 IF (K.EQ.M)RETURN

264. CALL SUBSW(K+1,K)

265. CALL INTSW(K,K+1)

266. K=K+1
267. GOTO 5

268. END

269. L

270. C
271. SUBROUTINE CORSRE(K,KRHS)

272. C APPLIES THE DIFFERENCE OPERATOR ON GRID K

273. C TO THE GRID FUNCTION IN ARRAY K, AND ADDS THE RESULT TO THE
274. C VALUES IN ARRAY KRHS.

275. C KRHS KRHS K K,0

276. C B =R + A U

277. C
278. C THE RESULT IS STORED IN ARRAY KRHS.

279. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

280. COMMON Q(18000),IST(200),IRHS(200)

281. CALL KEY(K,IST,II,JJ,H)

282. CALL KEY(KRHS,IRHS,II,JJ,H)

283. I1=II-1

284. J1=JJ-1
285. DO 1 I=2,I1

-65-

- i , . A

APX-B-PFASMD

286. IR=IRHS(I)
287. IO=IST(I)

288. IM=IST(I-1)

289. IP=IST(I+l)

290. DO 1 J=2,J1

291. A=--Q(IR+J)-Q(IO+J+1)-Q(IO+J-1)-Q(IM+J)-Q(IP+J)
292. 1 Q(IR+J)=-A-4.*Q(IO+J)

293. RETURN

294. END
295. C

296. C

297. SUBROUTINE GRDFN(N,IMAX,JMAX,HH)
298. C SETS UP ARRAY N.

299. C IMAX THE DIMENSION IN THE X DIRECTION
300. C JMAX THE DIMENSION IN THE Y DIRECTION
301. C HH THE GRID SIZE

302. C THE ARRAY NST CONTAINS THE STARTING ADDRESSES OF THE ARRAYS.
303. C THE ARRAY IMX CONTAINS THE MAXIMUM ROW NUMBERS
304. C THE ARRAY JMX CONTAINS THE MAXIMUM COL NUMBERS

305. C THE ARRAY H CONTAINS THE GRID SIZES.

306. C

307. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
308. COMMON/GRD/NST(20),IMX(20),JMX(20),H(20)

309. COMMON /QDAT/NQSIZE,NQERR

310. DATA 1Q11!

311. NST(N)=IQ
312. IMX(N)=IMAX

313. JMX(N)=JMAX

314. H(N)=HH

315. IQ-IQ+IMAX*JMAX

316. IF(IQ.LE.NQSIZE+1) RETURN

317. NQERR=IQ-1

318. END

319. C

*320. C
321. SUBROUTINE INTSW(KC,KF)
322. C INTERPOLATES CORRECTION ON COARSE GRID KC

323. C AND ADDS TO SOLUTION ON GRID KF.

324. C KF KF KC IK' KF

325. C U =PHI(I W +U ~U
326. C KC

327. C

328. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

329. COMMON /SWDAT/NFGSW,NINTSW,NPUTSW,NRELSW,NRESSW

330. GOTO(1,2,3),NINTSW

331. C

332. 1 CALL INTADD(KC,KF)

333. RETURN

334. C
335. 2 CALL INTADM(KC,KF)

336. RETURN

337. C
338. 3 CALL INTAPR(KC,KF)

339. RETURN

340. END

341. C

342. C

* -66-

inMm APX-B-PFASMD ----

343. SUBROUTINE INTADD(KC,CP)
344o* C LINEARLY INTERPOLATES CORRECTION ON COARSE GRID KC
345. C AND ADDS TO SOLUTION ON GRID KF.
346. C K.F KF KC KF KF
347. C U =PHI(I W + U jU
348. C KC
349. C
350. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
351. COMMON Q(18000),ISTC(200),ISTF(200)
352. CALL KEY(KC,ISTC,IIC,JJC,HC)
353. CALL KEY(KF,ISTF,IIF,JJF,HF)

*354. DO 1 IC=2,IIC
355. IF=2*IC-1
356. JF=1

357. IFO=ISTF(IF)
358. IFM=-ISTF(IF-1)
359. ICO=ISTC(IC)

*360. ICM=ISTC(IC-1)
361. Do 1 JC=2,JJC
362. JF-JF+2
363. A=.5*(Q(ICO+JC)+Q(ICO+JC-1))
364. AM=.5*(Q(ICM+JC)+Q(ICM+JC-1))
365. Q(IFO+JF) =Q(IFO+JF)+Q(ICO+JC)
366. Q(IFM+JF) = Q(IFM+JF)+.5*(Q(ICO+JC)+Q(ICM+JC))
367. Q(IFO+JF-1)=Q(IFO+JF-1)+A
368. 1 Q(IFM+JF-1) = Q(IFM+JF-1)+.5*(A+AM)
369. RETURN
370. END
371. C
372. SUBROUTINE INTADM(KC,KF)
373. C MODIFICATION #6.
374.* C LINEARLY INTERPOLATES CORRECTION ON COARSE GRID KC
375. C AND ADDS TO SOLUTION ON GRID KF.
376. C CORRECTION ONLY ADDED IF SOLUTION U ON FINE GRID IS
377. C NOT ZERO. SEE (5.15).
378. C KF KF KC KF
379. C U I1 U + U
380. C KC
381. C
382. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
383. COMMON Q(18000),ISTC(200),ISTF(200)
384. CALL KEY(KC,ISTC,IIC,JJC,HC)
385. CALL XEY(XF,ISTFIIF,JJFHF)
386. DO 1 IC=2,IIC

387. IFin2*IC-1
388. JF=1
389. IFO=ISTF(IF) *

390. IFM=ISTF(IF-1)
391. ICO=ISTC(IC)
392. ICM=ISTC(IC-1)

393. DO 1 JC=2,JJC
394. JF=JF+2
395. A=.5*(Q(ICO+JC)+Q(ICO+JC-1))
396. AM=.5*(Q(ICM+JC)+Q(ICM+JC-1))
397. IF(Q(IFO+JF).NE.0)Q(IFO+JF) - Q(IFO+JF)+Q(ICO+JC)
398. IF(Q(IFM+JF).NE.0)Q(IFM+JF) - C(IFM+JF)+.5*(Q(ICO+JC)+Q(ICM+JC))
399. IF(Q(IFO+JF-1).NE.0)Q(IFO+JF-1)=Q(IFO+JF-1)+A

-67-

-- = APX-B-PFASMD

400. IF(Q(IFM+JF-I).NE.0)Q(IFM+JF-1) Q(IFM+JF-1)+.5*(A+AM)
401. 1 CONTINUE
402. RETURN
403. END
404. C
405. C

406. C

407. SUBROUTINE INTAPR(KC,KF)
408. C MODIFICATION #1, PHI=MAX(0,U)
409. C LINEARLY INTERPOLATES CORRECTION ON COARSE GRID KC
410. C AND ADDS TO SOLUTION ON GRID KF.
411. C KF KF KC KF KF
412. C U =PHI(I W + U ;U
413. C KC
414. C
415. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
416. COMMON Q(18000),ISTC(200),ISTF(200)
417. CALL KEY(KC,ISTC,IIC,JJC,HC)
418. CALL KEY(KF,ISTF,IIF,JJFHF)
419. DO 1 IC=2,IIC
420. IF=2*IC-1
421. JF=l
422. IFO=ISTF(IF)

423. IFM=ISTF(IF-1)
424. ICO=ISTC(IC)
425. ICM=ISTC(IC-1)
426. DO 1 JC=2,JJC
427. JF=JF+2
428. A=.5*(Q(ICO+JC)+Q(ICO+JC-1))
429. AM=.5*(Q(ICM+JC)+Q(ICM+JC-1))
430. Q(IFO+JF) =AMAX1(0.ODO, Q(IFO+JF)+Q(ICO+JC)
431. Q(IFM+JF) =AMAX1(0.ODO, Q(IFM+JF)+.5*(Q(ICO+JC)+Q(ICM+JC))
432. Q(IFO+JF-I)=AMAXl (0.0D0,Q(IFO+JF-1)+A)
433. 1 Q(IFM+JF-1) =AMAX1(0.ODO, Q(IFM+JF-I)+.5*(A+AM)

434. RETURN
435. END

436. C
437. SUBROUTINE KEY(K,IST,IMAX,JMAX,HH)

438. C RECOVERS THE INFORMATION ABOUT ARRAY K SET UP BY
439. C THE SUBROUTINE GRDFN.
440. C THE VALUE OF THE GRID FUNCTION AT THE POINT (I,J)
441. C IS ADDRESSED AS U(IST(J)+I).

442. C
443. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
444. COMMON/GRD/NST(20),IMX(20),JMX(20),H(20)
445. DIMENSION IST(1)
446. IMAX=IMX(K)
447. JMAX=JMX(K)
448. IS=NST(K)-JMAX-1
449. DO 1 I=1,IMAX
450. IS=IS + JMAX
451. 1 IST(I)=IS

452. HH=H(K)
453. RETURN

454. END
455. C
456. C

-68-

4 APX-B-PFASMD

457. SUBROUTINE PUTF(K,F,NH)
458. C INSERTS THE VALUES OF THE FUNCTION F

459. C EVALUATED AT THE POINTS OF GRID X
460. C AND MULTIPLIED BY GRIDSIZE**NH
461. C INTO THE ARRAY K.
462. C
463. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
464. COMMON Q(18000),IST(600)
465. CALL KEY (K,IST,II,JJ,H)

466s H2-H**NH
467. DO 1 I=1,11
468. DO 1 Jml,JJ
469o X=(I-1)*H
470. Y=(J-1)*H
471. 1 Q(IST(I)+J)=F(X,Y)*H2
472. RETURN
473. END
474. C
475. C
476. SUBROUTINE PUTSW(KF,KC)
477. C THIS SUBROUTINE TRANSFERS THE SOLUTION ON THE FINE GRID

478. C KF INTO THE COARSE GRID KC.
479. C KC,0 KC KF

480. C U ~I U
481. C XE
482. C
483.* COMMON /SWDAT/NFGSW,NINTSW,NPUTSW,NRELSW,NRESSW
484. GOTO(1,2),NPUTSW
485. 1 CALL PUTU(KF,KC)
486. RETURN
487. 2 CALL PUTUNN(KF,KC)
488. RETURN
489. END
490. C
491. C

492. SUBROUTINE PUTU(KF,KC)
493. C THIS SUBROUTINE INJECTS THE SOLUTION ON THE FINE GRID

494. C KF INTO THE COARSE GRID KC.
495. C KC,0 KC KF
496. C U I U
497. C KF
498. C

499. IMPLICIT DOUBLE PRECISION (A-H,0-Z)
500. COMMON QC1BOOO),IUF(200),IUC(200)

*501. CALL KEY(KF,IUF,IIF,JJF,HF)
502. CALL KEY(KC,IUC,IIC,JJC,HC)
503. DO 1 IC-1,IIC
504. IFin2*IC-1
505. IFO-IUF(IF)
506. ICO=IUC(IC)

507. JF-1l
508o DO 1 JC-1,JJC
509. JF-JF+2
510. Q(ICO+JC)in QCIFO+JF)
511. 1 CONTINUE
512. RETURN
513. END

-69-

,==-s APX-B-PFASMD

514. C
515. C

516. SUBROUTINE PUTUNN(KF,KC)

517. C MODIFICATION #2. TRANSFER 0 IF ANY NEIGHBOR ZERO.
518. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
519. COMMON Q(18000),IUF(200),IUC(200)

520. CALL KEY(KF,IUF,IIF,JJF,HF)

521. CALL KEY(KC,IUC,IIC,JJC,HC)
522. DO 1 IC=1,IIC

523. IF=2*IC-1

524. IFO=IUF(IF)
525. ICO=IUC(IC)

526. JF=-1

527. DO I JC=1,JJC

528. JF=JF+2

529. QTEMP= Q(IFO+JF)
530. IF (IC.EQ.1 .OR. IC.EQ.IIC) GO TO 1

531. IF (JC.EQ.1 .OR. JC.EQ.JJC) GO TO 1

532. IFP=IJF(IF+1)
533. IFM=IUF(IF-1)

534. IF(Q(IFP+JF-1).LE.0) QTEMP=0

535. IF(Q(IFP+JF+1).LE.0) QTEMP=0
536. IF(Q(IFP+JF).LE.0) QTEMP=O
537. IF(Q(IFM+JF-1).LE.0) QTEMP=0

538. IF(Q(IFM+JF+1).LE.0) QTEMP-0
539. IF(Q(IFM+JF).LE.0) QTEMP=0
540. IF(Q(IFO+JF-1).LE.0) QTEMP=0

541. IF(Q(IFO+JF+1).LE.0) QTEMP=0

542. 1 Q(ICO+JC)=QTEMP
543. RETURN
544. END

545. C

546. C
547. C
548. SUBROUTINE RELSW(K,KRHS,ERR)

549. C CARRIES OUT ONE GAUSS-SEIDEL PROJECTED
550. C SWEEP ON THE GRID K WITH RIGHT HAND SIDE IN ARRAY KRHS.
551. C RETURNS WITH ERR= G-NORM OF THE DYNAMIC RESIDUALS
552. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
553. COMMON /SWDAT/NFGSW,NINTSW,NPUTSW,NRELSW,NRESSW

554. GOTO (1,2),NRELSW

555. C

556. 1 CALL RELAX(K,KRHS,ERR)

557. RETURN
558. C

559. 2 CALL RELXFR(K,KRHS,ERR)

560. RETURN

561. END
562. C
563. C

564. SUBROUTINE RELAX(K,KRHS,ERR)
565. C NORMAL RELAXATION

566. C CARRIES OUT ONE GAUSS-SEIDEL PROJECTED
567. C SWEEP ON THE GRID K WITH RIGHT HAND SIDE IN ARRAY KRHS.
568. C RETURNS WITH ERR= G-NORM OF THE DYNAMIC RESIDUALS
569. C
570. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

-70-

S---- APX-B-PFASMD .

571. COMMON Q(18000),IST(200),IRHS(200)

572. CALL KEY(K,IST,II,JJ,H)

573. CALL KEY(KRHS, IRHS,II,JJ,H)

574. I1=II-1
575. Jl=JJ-1
576. ERR=0.
577. DO 1 I=2,I1

578. IR=IRHS(I)
579. IO=IST(I)

580. IM=IST(I-1)
581. IP=IST(I+1)

582. DO 1 J=2,J1

583. A=Q(IR+J)-Q(IO+J+1)-Q(IO+J-1)-Q(IM+J)-Q(IP+J)

584. QT=- .25*A

585. QN=MAX(0.0,QT)

586. ERR=ERR+(QN-Q(IO+J))**2

587. 1 Q(IO+J)=QN
588. ERR=SQRT (ERR)/H

589. RETURN

590. END
591. C

592. SUBROUTINE RELXFR(KKRHS,ERR)

593. C "FROZEN" RELAXATION: MODIFICATION # 3

594. C CARRIES OUT ONE GAUSS-SEIDEL PROJECTED

595. C SWEEP ON THE GRID K WITH RIGHT HAND SIDE IN ARRAY KRHS.

596. C RETURNS WITH ERR
= G-NORM OF THE DYNAMIC RESIDUALS

597. C DOES NOT CHANGE VALUE OF U ON GRID K

598. C IF K<M AND U=O ON GRID M

599. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

600. COMMON Q(18000),IST(200),IRHS(200)

601. DIMENSION ISTM(100)

602. C ASSUMES THAT U AND RHS ARE STORED ON GRIDS SEPARATED BY M

603. M=KRHS-K

604. CALL KEY(K,IST,II,JJ,H)

605. CALL KEY(M,ISTM,IIM,JJM,HM)

606. INTERV=2**(M-K)

607. CALL KEY(KRHS,IRHS,II,JJ,H)

608. I1=II-1

609. Jl=JJ-1
610. ERR=0 .
611. DO I I=2,11

612. IR=IRHS(I)

613. IO=IST(I)

614. IZM=ISTM(I+INTERV*(I-1))
615. IM=IST(I-1)

616. IP=IST(I+1)

617. DO 1 J=2,J1

618. IF(K.EQ.M) GO TO 10

619. QM=Q(IZM+1+INTERV*(J-1))

620. IF(QM.EQ.0) GO TO 1

621. 10 CONTINUE
622. A=Q(IR+J)-Q(IO+J+1)-Q(IO+J-1)-Q(IM+J)-Q(IP+J)
623. QT=- .25*A

624. QN=MAX(0.0,QT)

625. ERRsERR+(QN-Q(IO+J))**2

626. Q(IO+J)-QN

627. 1 CONTINUE

-71-

-.. APX-B-PFASMD ----

628. ERR-SQRT(ERR)/H
629. RETURN
630. END
631. C
632. SUBROUTINE RESSW(KF,KRF,KRC)
633. C CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE
634. C IN ARRAY KRF , AND TRANSFERS INTO ARRAY KRC.
635. C BEFORE TRANSFER, THE RESIDUAL IS SCALED
636. C BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE
637. C FACT THAT THE GRID SIZE ON GRID KF IS HALF THE
638. C GRIDSIZE ON GRID KC.
639. C KRC KC KRF KF KF
640. C R =4*S (B -A U
641. C KF
642. C
643 . COMMON /SWDAT/NFGSW, NINTSW, NPUTSW, NRELSW, NRESSW
644. GOTO (1,2,3),NRESSW

645. C
646. 1 CALL RESCAL (KF, KRF, KRC)
647. RETURN
648. C
649. 2 CALL RESCL1I(KF,KRF,KRC)
650. RETURN
651. C
652. 3 CALL RESCAV(KF,KRF,KRC)
653. RETURN
654. END
655. C

656. C
657. SUBROUTINE RESCAL(KF, KRF, KRC)
658. C CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE
659. C IN ARRAY KRF , AND INJECTS INTO ARRAY KRC.
660. C BEFORE INJECTION, THE RESIDUAL IS SCALED
661. C BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE
662. C FACT THAT THE GRID SIZE ON GRID KF IS HALF THE
663. C GRIDSIZE ON GRID KC.
664. C KRC KC KRF KF KF
665. C R =4*S (B -A U
666. C KF
667. C
668. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
669. COMMON Q(1 8 0 0 0),IUF(200),IRF(200),IRC(200)
670. CALL KEY(KF,IUF,IIF,JJF,HF)
671. CALL KEY(KRF,IRF,IIF,JJFHF)
672. CALL KEY(KRC,IRC,IIC,JJC,HC)

673. IIC1=IIC-
674. JJC1=JJC-1
675. DO 1 IC=2,IICI
676. ICR=IRC(IC)
677. IF=2*IC-1

678. JF=1
679. IFR-IRF(IF)
680. IFO=IUF(IF)
681. IFM=IUF(IF-1)
682. IFP-IUF(IF+)
683. DO I JC=2,JJCI
684. JF=JF+2

-72-

APX-B-PFASMD

685. S-'Q(IFO+JF+I)+Q(IFO+JF-1)+Q(IFM+JF)+Q(TFP+JF)
686. 1 Q(ICR+JC)"4.*(Q(IFR+JF)-S+4.*Q(IFO+JF))
687. RETURN

688. END
689. C
690. C
691. SUBROUTINE RESCL1(KFKRF,KRC)
692. C MODIFICATION #5 UPDATED JUNE 23 1980

693. C USES WEIGHTED RESIDUALS NEAR THE BOUNDARY
694. C CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE
695. C IN ARRAY KRF , AND INJECTS INTO ARRAY KRC.
696. C BEFORE INJECTION, THE RESIDUAL IS SCALED
697. C BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE

698. C FACT THAT THE GRID SIZE ON GRID KF IS HALF THE
699. C GRIDSIZE ON GRID KC.
700. C KRC KC KRF KF KF
701. C R =4*1 (B - A U
702. C KF
703. C
704. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
705. COMMON Q(18000),IUF(200),IRF(200),IRC(200)
706. DIMENSION R(9)
707. CALL KEY(KF,IUF,IIF,JJF,HF)
708. CALL KEY(KRF,IRF,IIF,JJF,HF)
709. CALL KEY(KRC,IRC,IIC,JJC,HC)
710. IIC1IIC-1
711. JJC1=JJC-1

712. DO 1 IC=2,IICI
713. ICR=IRC(IC)
714. IF-2*IC-1
715. JF=I
716. IFR=IRF(IF)
717. IFO=IUF(IF)
718. IFM=IUF(IF-1)
719. IFP=IUF(IF+I)
720. DO 1 JC=2,JJC1
721. JF=JF+2

722. IF(Q(IFO+JF).EQ.0)GOTO 2
723. IF(Q(IFP+JF+1).GT.0 .AND. Q(IFP+JF-1).GT.0 .AND.
724. * Q(IFO+JF+1).GT.0 .AND. Q(IFO+JF-1).GT.0 .AND.

725. * Q(IFM+JF+1).GT.0 .AND. Q(IFM+JF-1).GT.0 .AND.
726. * Q(IFM+JF).GT.0 .AND. Q(IFP+JF).GT.0)GOTO 2
727. N-0
728. DO 3 I1=1,3
729. I-IF+I1-2
730. DO 3 JI=1,3
731o J=JF+J1-2
732. N=N+1
733. IR=IRF(I)
734. IO-IUF(I)
735o IM-.IUF (I-1)

736. IP=IUF(I+1)
737. S=Q(IO+J+l)+Q(IO+J-1)+Q(IM+J)+Q(IP+J)
738. S-Q(IR+J)+4*Q(IO+J)-S
739. IF(Q(IO+J).EQ.0)S=0
740. R(N)-S
741. 3 CONTINUE

-73-

APX-B-PFASMD

742. Q(ICR+JC)=R(5)+.5' (R(2)+R(4)+R(6)+R(B)+
743. 1 .5*(R(1)+R(3)+R(7)+R(9))
744. GOTO 1
745. 2 S=Q(IFO+JF+1)+Q(IFO+JF-1)+Q(1Ft4+JF)+Q(IFP+JF)
746. Q(ICR+JC)=4.*(Q(IFR+JF)-S+4.*Q(IFO+JF))
747. 1 CONTINUE
748. RETURN
749. END
750. C

*751. C
752. SUBROUTINE RESCAV(KF, KRF ,KRC)
753. C MODIFICATION #4

754. C AVERAGES RESIDUALS OVER NEIGHBOURING POINTS
755. IMPLICIT DOUBLE PRECISION (A-H,O-z)

756. COMMON Q(18000),IUF(200),IRF(200),IRC(200)

* I757. CALL KEY(KF,IUF,IIFJJFHF)
758. CALL KEY(KRF,IRF,IIF,JJF,HF)
759. CALL KEY(KRC,IRC,IIC,JJC,HC)
760. C CLEAR COARSE GRID
761. DO 9 I=1,IIC
762. ICR=IRC(I)

763. Do 9 J=1,JJC
764. 9 Q(ICR+J)=0.
765. C
766. IIF1=IIF-1
767. JJF1=JJF-1
768. DO 100 IF=2,IIFI

*769. IC=(IF+1)/2
770. IL=IF+1-2*IC

771. ICR=IRC(IC)
772. IFR=IRF(IF)

773. IFO=IUF(IF)
774. IFMIUF(IF-1)
775. IFP=IUF(IF+1)

*776. DO 100 JF=2,JJF1
777. S=Q(IFO+JF+1)+Q(IFO+JF-1)+Q(IFM+JF)+Q(IFP+JF)

778. RES=(Q(IFR+JF)-S+4.*Q(IFO+JF))
779. JC=(JF+1)/2
780. JL=JF+1-2*JC
781. K=2*IL+JL+l
782. GO TO (1,2,3,4),K

783. 1 Q(ICR+JC)=Q(ICR+JC)+RES
784. GO TO 100
785. 2 RES=RES/2
786. Q(ICR+JC)=Q(ICR+JC)+RES
787. Q(ICR+JC+1)=Q(ICR+JC+1)+RES
788. GO TO 100

.f 789. 3 RES=RES/2
*790. Q(ICR+JC)=Q(ICR+JC)+RES

791. ICR1=IRC(IC+1)
792. Q(ICRI+JC)-Q(ICRI+JC)+RES
793. GO TO 100
794. 4 REs=REs/4
795. Q(ICR+JC)=Q(ICR+JC)+R.ES
796. Q(ICR+JC+1)=Q(ICR+JC+1)+RES
797. ICR1=IRC(IC+1)

*798. Q(ICR1+JC)-Q(ICR1+JC)+RES

-74-

APX-B-PFASMD

799. Q(ICR1+JC+1)=Q(ICR1+JC+1)+RES
800. GO TO 100
801. 100 CONTINUE

802. RETURN
803. END
804. C
805. C

806. SUBROUTINE SOLPRT (M, MPRINT)
807. C PRINTS THE ARRAY M ON THE SUBARRAY MPRINT.
808. C

809. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
810. COMMON Q(18000),IST(600)

811. DIMENSION QTEM(100)
812. CALL KEY (M,IST,II,JJ,H)
813.• INTERV-2 ** (M-MPRINT)
814. DO 20 J=JJ,1,-INTERV

815. L=0
816. DO 10 I=I,II,INTERV
817. C X AND Y ARE NOT PRINTED HERE, BUT ARE COMPUTED IN
818. C CASE A LATER VERSION NEEDS THEM.
819. X-f(I-1)*H

820. Y=(J-1)*H
821. L=L+1
822. QTEM(L)=Q(IST(I)+J)
823. 10 CONTINUE
824. PRINT *,(QTEM(LL),LL=1,L)
825. 20 CONTINUE
826. RETURN
827. END
828. C
829. C
830. SUBROUTINE SUBSW(KF,KC)
831. C THIS SUBROUTINE COMPUTES THE VALUE TRANSFERRED FROM GRID KF TO
832. C GRID KC AND SUBTRACTS IT FROM THE SOLUTION ON GRID KC.
833. C KC KC KC KF
834. C W =U - I U
835. C KF
836. C
837. COMMON /SWDAT/NFGSW,NINTSW,NPUTSW,NRELSW,NRESSW
838. GOTO(1,2),NPUTSW
839. 1 CALL SUBTRC(KF,KC)
840. RETURN
841. 2 CALL SUBTNN(KF,KC)
842. RETURN
843. END
844. C
845. C
846. SUBROUTINE SUBTRC(KF,KC)
847. C THIS SUBROUTINE COMPUTES THE VALUE INJECTED FROM GRID KF TO
848. C GRID KC AND SUBTRACTS IT FROM THE SOLUTION ON GRID KC.
849. C KC KC KC KF
850. C W -U -I U
851. C KF

852. C
853. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
854. COMMON Q(18000),IUF(200),IUC(200)
855. CALL KEY(KF,IUF,IIF,JJF,HF)

-75-

APX-B-PFASMD

856. CALL KEY(KC,IUC,IIC,JJC,HC)

857. DO 1 1C1I,IIC

858. IF=2*IC-1

859. IFO=IUF(IF)

860. ICO=IUC(IC)

861. JF=-1

862. DO 1 JC=1,JJC

863. JF=JF+2

864. Q(ICO+JC)=Q(ICO+JC)-Q (IFO+JF)

865. 1 CONTINUE

866. RETURN

867. END

868. C

869. C

870. SUBROUTINE SUBTNN(KF,KC)

871. C MODIFICATION #2. TRANSFER 0 IF ANY NEIGHBOR ZERO.

872. C THIS SUBROUTINE COMPUTES THE VALUE INJECTED FROM GRID KF TO

873. C GRID KC AND SUBTRACTS IT FROM THE SOLUTION ON GRID KC.

874. C KC KC KCC KF

875. C W =U - I U

876. C KF

877. C

878. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

879. COMMON Q(18000),IUF(200),IUC(200)

880. CALL KEY(KF,IUF,IIF,JJF,HF)

881. CALL KEY(KC,IUC,IIC,JJC,HC)

882. DO 1 IC=1,IIC

883. IF=2*IC-1

884. IFO=IUF(IF)

885. ICO=IUC(IC)

886. JF=-1

887. DO 1 JC=1,JJC

888. JF=JF+2

889. QTEMP- Q(IFO+JF)

890. IF (IC.EQ.1 .OR. IC.EQ.IIC) GO TO 1

891. IF (JC.EQ.1 .OR. JC.EQ.JJC) GO TO 1

892. IFP=IUF(IF+1)

893. IFM=IUF(IF-1)

894. IF(Q(IFP+JF-1).LE.0) QTEMP=0

895. IF(Q(IFP+JF+1).LE.0) QTEMP=0

896. IF(Q(IFP+JF).LE.0) QTEMP=O

897. IF(Q(IFM+JF-1).LE.0) QTEMP=0

898. IF(Q(IFM+JF+1).LE.0) QTEMP=0

899. IF(Q(IFM+JF).LE.0) QTEMP=O

900. IF(Q(IFO+JF-1).LE.0) QTEMP=0

901. IF(Q(IFO+JF+1).LE.0) QTEMP-0

902. 1 Q(ICO+JC)=Q(ICO+JC)-QTEMP

903. RETURN

904. END

905. C
906. C

-76-

APPX-C-PFMG

1. C
2. C
3. C THIS PROGRAM SOLVES THE PROBLEM OF POROUS FLOW THROUGH A
4. C RECTANGULAR DAM OF HEIGHT Y1 AND WIDTH A.
5. C THE RESERVOIR TO THE RIGHT OF THE DAM IS OF HEIGHT Y2.

6. C

7. C WRITTEN BY ACHI BRANDT AND COLIN CRYER AUGUST 1980

8. C
9. C THIS PROGRAM WAS USED TO COMPUTE THE RESULTS IN

10. C SECTION 6 OF THE MRC REPORT.

11. C

12. C ADDITIONAL PARAMETERS USED ARE:

13. C NXO THE NUMBER OF GRID INTERVALS IN THE X-DIRECTION IN

14. C THE COARSEST GRID, GRID 1.

15. C NY0 THE NUMBER OF GRID INTERVALS IN THE Y-DIRECTION IN

16. C THE COARSEST GRID, GRID 1.

17. C HO THE GRID SIZE IN THE COARSEST GRID, GRID 1.
18. C M THE NUMBER OF GRIDS TO BE USED.

19. C LIN THE STARTING GRID. LIN.GE.2

20. C TOL THE TOLERANCE

21. C RATIO TOLERANCE ON GRID L IS TOLL=TOL*RATIO**L

22. C WMAXM THE MAXIMUM NUMBER OF WORK UNITS PERMITTED ON THE

23. C FINEST GRID. COMPUTATION TERMINATES WHEN WMAXM IS

24. C EXCEEDED.

25. C WMAX THE MAXIMUM NUMBER OF WORK UNITS PERMITTED ON THE

26. C GRID L<M. COMPUTATION ON GRID L TERMINATES WHEN WMAX IS

27. C EXCEEDED.

28. C MPRINT THE GRID TO BE PRINTED AT THE END OF THE COMPUTATION.

29. C THAT IS, WE PRINT THE MPRINT SUBSET OF THE FINAL ANSWER

30. C ON THE GRID M.

31. C NQSIZE SIZE OF ARRAY Q
32o C MUST BE CHANGED FOR LARGE PROBLEMS BY EDITING PROGRAM

33. C =18000 FOR DAM PROBLEM M=2,3,4,5,6

34. C NR1 AFTER NR1 RELAXATIONS ON THE GRID K+1 THERE IS A

35. C TRANSFER TO GRID K.

36. C NR2 AFTER A TOTAL NUMBER OF NR2 RELAXATIONS ON GRID K

37. C THERE IS A TRANSFER TO GRID K+1

38. C NCYC MAXIMUM NUMBER OF CYCLES ON LEVEL L, LIN< L<M

39. C NCYCLN MAXIMUM NUMBER OF CYCLES ON LEVEL LIN

40. C NCYCM MAXIMUM NUMBER OF CYCLES ON LEVEL M

41. C ETA IF ERR.GE.ETA*ERRP GO TO COARSER GRID

42. C DELTA EPS(K-1)=DELTA*(ERROR ERR ON GRID K)

43. C PREC EPS(L)=MAX(PREC*TAU(L-1),TOL*RATIO**L)

44. C PRECM EPS(M)=MAX(PRECM*TAU(M-1),TOL*RATIO**M)

45. C

46. C WE CAN ALSO DO TAU EXTRAPOLATION:

47. C ITAU IF ITAU=1 DO TAU EXTRAPOLATION

48. C PT ORDER OF EXTRAPOLATION

49. C
50. C SWITCHES

51. C
52. C NFGSW USED IN SUBRUTINES F,G,SOLRED

53. C NFGSW =1 DAM PROBLEM

54. C =2 PROBLEM (5.3),(5.4).
55. C

56. C
57. C NINTSW =1 INJECTION. SUBROUTINE INTADD

-77-

==.... APPX-C-PFMG

58. C =2 MODIFICATION #6. SUBROUTINE INTADM

59. C CORRECTION ONLY ADDED WHEN U.NE.0. SEE (5.15).

60. C

61. C NRESSW =1 INJECTION. SUBROUTINE RESCAL

62. C =2 MODIFICATION #5. SUBROUTINE RESCL1

63. C USES WEIGHTED RESIDUALS NEAR BOUNDARY.

64. C RESIDUALS WITH U<0 SET EQUAL TO ZERO

65. C

66. C

67. C ALL THE PARAMETERS ARE SET IN THE PROGRAM, BUT THEIR VALUES

68. C CAN BE RESET ON THE NAMELIST INPUT CARD WHICH IS READ IN

69. C BY THE PROGRAM.

70. C THE NAMELIST CARD MUST BE PROVIDED AS INPUT.

71. C

72. C THE PROGRAM SETS UP STORAGE FOR THE SOLUTIONS AND RIGHT

73. C HAND SIDES.

74. C THE SOLUTIONS ARE STORED IN ARRAYS 1 TO M.

75. C THE RIGHT HAND SIDES (OR, SOMETIMES THE RESIDUALS
76. C ARE STORED IN ARRAYS M+1 TO 2*M.

77. C

78. C THE EXACT SOLUTION (WHEN KNOWN) IS STORED IN GRID NGRSOL

79. C THE VALUES OF TAU ARE STORED IN GRIDS 2M+I TO 3M-i
80. C

81 . C

82. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

83. EXTERNAL G,F

84. COMMON /PRBDAT/YI,Y2,A,R

85. COMMON /QDAT/NQSIZE,NQERR

86. COMMON /SOLTAU/M,NGRSOL,PT

87. COMMON /SWDAT/NFGSW,NINTSW,NRESSW

88 NAMELIST /INDAT/NXO,NY0,H0,M,LIN,NR1,NR2,ETA,DELTA

89. * ,TOL,RATIO,PREC,PRECM,WMAX,WMAXM,NCYC,NCYCLN,NCYCM,ITAU,PT,

90. * MPRINT,Y1,Y2,A,R

91. * ,NFGSW,NINTSW,NRELSW,NRESSW

92. CHARACTER ITITLE(80)

93. C

94. C READ IN AND PRINT TITLE CARDS

95. C FINISH READING TITLE WHEN LAST CARD IS BLANK

96. C FINISH RUN WHEN TITLE CARD IS BLANK
97. PRINT 18

98. 18 FORMAT(1HI)
99. NC=O
100. 5 READ 10,(ITITLE(I),I=1,80)

101. 10 FORMAT(80AI)

102. NC=NC+1
103. PRINT 11,(ITITLE(I),I=I,80)

104. 11 FORMAT(IH ,80Al)

105. DO 12 I=1,80

106. IF (ITITLE(I).NE.' ')GOTO 5

107. lz CONTINUE

108. IF(NC.EQ.1) STOP

109. C
110. NQSIZE=18000

111. NFGSW=1

112 NINTSW=I

113. NRESSW=1

114. Y1=24

-78-

APPX-C-PFMG

115: Y2=4

117. R=32.DO/15.DO
*118. NX0=2
*119. NY0=3

120. H0=8.
121. M=6

*122. LIN=2
123. NR1=2
124. NR2=3
125. ETA=1O.
126. DELTA=0
127. TOL=O
128. RATIO=1
129. PREC=O
130. PRECM=1
131. WMAX=30.
132. WMAXM=40
133. NCYC1l
134. NCYCLN=3
135. NCYCM=10
136. ITAU=O
137. PT =2
138. MPRINT=2
139. READ(5,INDAT)
140. WRITE(6,INDAT)
141. C PRINT MODIFICATION NUMBERS
142. PRINT 100
143. 100 FORMAT('0 ** THE FOLLOWING MODIFICATIONS WERE USED
144. IF(NINTSW.EQ.2) PRINT 106
145. IF(NINTSW.EQ.3) PRINT 101
146. IF(NRELSW.Er..2) PRINT 103
147. IF(NRESSW.EQ.2) PRINT 105
148. IF(NRESSW.EQ.3) PRINT 104
149. 101 FORMAT('0', 'MODIFICATION NUMBER 1')
150. 103 FORMAT('', 'MODIFICATION NUMBER 3')
151. 104 FORMAT('0', 'MODIFICATION NUMBER 4')
152. 105 FORMAT('0', 'MODIFICATION NUMBER 5')
153. 106 FORMAT('0', 'MODIFICATION NUMBER 6')
154. PRINT 110
155. 110 FORMAT(1 1
156. C SET TIME TO ZERO
157. CALL URTIMS(0.0)
158. CALL PFMG(NXO,NYO,HO,LIN,NR1,NR2,ETA,DELTA
159. * ,TOL,RATIO,PREC,PRECM,WMAX,WMAXM,NCYC,NCYCLN,NCYCM,ITAU,
160. * MPRINT,GF)
161. T=URTIMG('ELAPSE#)
162. 19 FORMAT(IHO, ' GRID-M SOLUTION',!!)
163. PRINT 19
164. CALL SOLPRT(M,MPRINT)
165. PRINT 20
166. 20 FORMAT(1H, 1GRID-7 SOLUTION',//)
167. CALL SOLPRT(NGRSOL,MPRINT)

*168. STOP
169. END
170. C
171. C

-79-

--" APPX-C-PFMG -'"-

172. DOUBLE PRECISION FUNCTION F(XY)
173. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
174. COMMON /PRBDAT/YI,Y2,A,R
175. COMMON /SWDAT/NFGSW,NINTSW,NRESSW
176. C THIS SUBROUTINE COMPUTES THE RIGHT HAND SIDE OF THE
177. C GOVERNING POISSON EQUATION DEL*DEL U=F.
178. GOTO(1,2),NFGSW
179. C
180. C DAM PROBLEM
181. 1 CONTINUE
182. F=I.
183. RETURN
184. C
185. C PROBLEM OF SECTION 5: (5.3) AND (5.4)
186. 2 CONTINUE
187. D=2.5*R
188. A=DMAX1(0 .DO,D-R*X-Y)
189. B=X+Y
190. C=2*(R**2+1)
191. F=(C-2.*A*A)*DCOS(B) +4*(R+1)*A*DSIN(B)+2*C
192. RETURN
193. END
194. C
195. C
196. DOUBLE PRECISION FUNCTION G(X,Y)
197. C THIS SUBROUTINE COMPUTES THE BOUNDARY DATA AND THE
198. C INITIAL APPROXIMATION TO THE SOLUTION U.
199. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
200. COMMON /PRBDAT/Y1,Y2,A,R
201 . COMMON /SWDAT/NFGSW,NINTSW,NRESSW
202. GOTO(1,2),NFGSW
203. C
204. C DAM PROBLEM
205. C THE INITIAL APPROXIMATION IS OBTAINED BY LINEAR INTERPOLATION
206. C IN THE X-DIRECTION BETWEEN THE GIVEN BOUNDARY DATA.
207. 1 CONTINUE
208. G1=.5*(Y1-Y)**2
209. G2=.5*(Y2-Y)**2
210. IF(Y.GE.Y2) G2=0
211. G=(G1*(A-X)+ G2*X)/A
212. RETURN
213. C
214. C PROBLEM OF SECTION 5: (5.3) AND (5.4)
215. C INITIAL APPROXIMATION IS A PERTURBATION OF EXACT SOLUTION
216. 2 CONTINUE
217. D=2.5*R
218. A=DMAX1(0.DO,D-R*X-Y)
219. B=X+Y
220. G=A*A*(DCOS(B)+2)
221. G=G+X*(3-X)*Y*(2-Y)*10
222. RETURN
223. END
224. C
225. SUBROUTINE PFMG(NXO,NYC,H0,LIN,NR1,NR2,ETA,DELTA
226. * ,TOL,RATIO,PREC,PRECM,WMAX,WMAXM,NCYC,NCYCLN,NCYCM,ITAU,
227. * MPRINT,U1,F)
228. C THIS SUBROUTINE IS THE MAIN FULL MULTIGRID SUBROUTINE.

-80-

-- - - - -- APPX-C-PFMG

229. C IT INITIALIZES THE PROBLEM, AND REPEA"DIY CALLS
230. C THE SUBROUTINES RELAX, RESCAL, PUTU,CORSRE, SUBTRC,AND INTADD.
231. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
232. COMMON /QDAT/NQSIZE,NQERR
233. EXTERNAL U1,F
234. DIMENSION EPS(10),IR2(10)
235. COMMON /SOLTAU/M,NGRSOL,PT

236. C
237. C
238. C SET UP ARRAYS 1 TO M FOR THE SOLUTIONS
239. C AND ARRAYS M+1 TO 2*M FOR THE RIGHT HAND SIDES,
240. C AND ARRAYS 2M+1 TO 3M-i FOR TAU ARRAYS AND
241. C SET ASIDE SPACE FOR GRID-7 SOLUTION IN 3M=NGRSOL GRID
242. C AND CHECK THAT Q ARRAY IS LARGE ENOUGH
243. NQERR=O
244. DO I K=I,M
245. K2=2**(K-1)

246. CALL GRDFN(K,NXO*K2+1,NY0*K2+1,HO/K2)
247. CALL GRDFN(K+M,NXO*K2+1 ,NYO*K2+1 ,HO/K2)
248. 1 CALL GRDFN(K+2*M,NXO*K2+1,NY0*K2+1,HO/K2)
249. NGRSOL-3*M
250. PRINT 90,NQSIZE
251. 90 FORMAT(' SIZE OF Q ARRAY = ', 110)
252. IF(NQERR.EQ.0)GOTO 92
253. PRINT 91,NQERR
254. 91 FORMAT(' *** ERROR IN GRDFN *** ARRAY Q NOT LARGE ENOUGH '
255. * /, ARRAY Q SIZE SHOULD BE AT LEAST =1, 110)
256. STOP
257. 92 CONTINUE

258. C
259. C
260. CALL SOLRED
261. C
262. C INITIALIZE
263. WU=0
264. CALL PUTF(LIN,U1 ,0)
265. DO 10 L=LIN,M
266. C
267. C BEGIN NEW FINEST LEVEL

268. C
269. PRINT 6,L
270. 6 FORMAT(1H0,60(IH.),I3,2X,60(H.)/')
271. CALL PUTF(L+M,F,2)
272. TOLL--TOL*(RATIO**L)
273. EPS(L)--TOLL
274. WU=.25*WU

275. NCYCL=NCYC
276. IF(L.EQ.M)NCYCL=NCYCM
277. ICYC=0
278. WMAXL=WMAX
279. IF(L.EQ.M)WMAXL=WMAXM
280. PRECL-PREC
281. IF(L.EQ.M)PRECL=PRECM
282. C

283. C
284. K=L
285. IR2(L)=0

•-81-

APPX-C-PFMG ==mu

286. CI287. C BEGIN A NEW WORK LEVEL
288. C
289. 5 IR1=0
290. ERR=l.E30
291. C
292. C RELAX ONCE ON GRID K
293. 3 ERRP=ERR
294. CALL RELAX(KK+M,ERR)
295. WrJ=WJ+4.**(K-.L)

297. IR2(K)=IR2(K)+l
298. WRITE(6,40)K,ERR,WU,IR1,IR2(K)
299. 40 FORMAT(' LEVEL' ,12jl RESIDUAL NORM4=', D10.3,8 WORK-=', F7.3
300. ' IR1= ',12,' IR2(K)=',I2)
301. C
302. C DECIDE WHICH GRID TO USE NEXT
303. IF (WU.GE.WMAXL)GOTO 20
304. IF(ERR.LT-EPS(K))GOTO 2
305. IF(IR2(K).NE.NR2)GOTO 8
306. IF(K.LT.L)GOTO 2
307. C
308. ICYC=ICYC+1
309. IF(ICYC.EQ.NCYCL .AND. L.NE.LIN)GOTO 20
310. IF(ICYC.EQ.NCYCLN .AND. L.EQ.LIN)GOTO 20
311. IR2(L)=0
312. IRi=0
313. C
314. 8 IF(IRl.EQ.NR1)GOTO 4
315. IF(IR1.EQ.1.OR.ERR.LT. ERRP*ETA)GO TO 3
316. C
317. C GO TO COARSER GRID
318. 4 IF(K.EQ.1)GOTO 3
319. CALL RESSW(K,K+M,K+M-1)
320. CALL RESBW(K,K+M,K+2*M-1)
321. EPS(K-1)=DELTA*ERR
322. =l
323. CALL PUTtJ(K+1,K)
324. CALL CORSRE(K,1(4M)
325. ITAUEX=0
326. IF((ITAU.EQ.1).AND.(L.GT.LIN).AND.(K.EQ.L-1))ITAJEX=I
327. CALL TAUCAM(KI(+MK+2*M,ITAUEX,TAUGNM)
328. PRINT 60,TAUGNI4IK
329. 60 FORMAT(50X,OGREEN NORM OF TAU-Z =lEl2.3,5X'K,I2)
330. IF(K.EQ.(L-1))EPS(L)=DMAX1(PRECL*TAUGNM,TOLL)
331. IR2(K)=0
332. GOTO 5

*333. C
*334. C GO TO FINER GRID

335. 2 IF(K.EQ.L)GOTO 20
*336. CALL SUBTRC(K+1,K)

337. CALL INTSW(K,K+l)
338. K=K+l
339. GOTO 5
340. C
341. C
342. C FINISHED WITH LEVEL L

-82-

= ==fi APPX-C-PFMG =-.=

343. 20 CONTINUE
344. C
345. C THE NEXT SEVEN STATEMENTS COMPUTE THE GREEN NORM OF TAU
346. C AND THE GREEN AND L-INFINITY NORMS OF THE ERROR
347. C (IF ACCURATE SOLUTION IS KNOWN
348. 11 CALL RESSW(L,L+M,L+M-1)
349. CALL RESBW(L,L+M,L+2*M-1)
350. CALL PUTU(L,L-1)
351. CALL CORSRE(L-1,L-1+M)
352. CALL TAUCAM(L-1,L-I+M,L-1+2*M,0,TAUGNM)
353. K=L-1
354. PRINT 60,TAUGNM,K
355. CALL DIFFMX(L)

356. C
357. C
358. IF(L.EQ.M)GOTO 10

359. CALL INTRP3(L,L+I)

360. CALL PUTB(U1,L+1)
361. C
362. 10 CONTINUE
363. RETURN
364. END
365. C
366. C
367. SUBROUTINE CORSRE(K,KRHS)
368. C APPLIES THE DIFFERENCE OPERATOR ON GRID K
369. C TO THE GRID FUNCTION IN ARRAY K, AND ADDS THE RESULT TO THE
370. C VALUES IN ARRAY KRHS.
371. C KRHS KRHS K K,0
372. C B =R + A U
373. C
374. C THE RESULT IS STORED IN ARRAY KRHS.
375. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
376. COMMON Q(18000),IST(200),IRHS(200)
377. CALL KEY(K,IST,II,JJ,H)
378. CALL KEY(KRHS,IRHS,II,JJ,H)
379. I1=II-i
380. J1=JJ-1
381. DO 1 1=2,11
382. IR=IRHS(I)
383. IO=IST(I)
384. IM=IST(I-1)
385. IP=IST(I+1)

386. DO I J-2,J1
387. A=-Q(IR+J)-Q(IO+J+1)-Q(IO+J-1)-Q(IM+J)-Q(IP+J)
388. 1 Q(IR+J)= -A -4 .*Q(IO+J)
389. RETURN
390. END
391. C
392. C
393. SUBROUTINE DIFFMX(K)
394. C NOT TIMED
395. C COMPARES SOLUTION ON GRID K WITH ACCURATE SOLUTIuN
396. C STORED IN GRID NGRSOL
397. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

398. COMMON Q(18000),IST(200),ISTA(200)
399. COMMON /SOLTAU/M,NGRSOLPT

-83-

===APPX-C-PFMG

400. TIME-URTIMG(0)
401. CALL KEY(K,IST,zI,JJ,H)
402. CALL KEY(NGRSOLISTA,IIA,JJA,HA)
403. DIFMXO0.
404. DIFGNM=0
405. SOLMX=0.
406. SOLGNM-=0
407. INTERV=-(IIA-1)/(II-1)
408. DO 1 1=1,I1
409. X=(I-1)*H
410. IA=(I-1)*INTERV+1
411. DO 1 J=1,JJ
412. Y=(J-1)*H
413. JA=(J-1)*INTERv+1
414. DIF=ABS(Q(ISTA(IA)+JA) -Q(IST(I)+J))
415. DIFGNM=-DIFGNM+DIF*DIF
416. SOL=ABS(Q(ISTA(IA)+JA))
417. SOLGNM=SOLGNM+SOL*SOL
418. SOLMX=AMAXI(SOL,SOLMX)
419. 1 DIFMX=AMAXI(DIF,DIFMX)
420. DIFGNM=SQ~R(DIFGNM)/H
421. PRINT 101,DIFMX,DIFGNM
422. 101 FORMAT(15X,l SOLUTION ERROR: L INFINITY NORM =',El3.5,
423. * 5X,'GNORM =',E13.5)
424. SOLGNM=SQRT(SOLGNM)/H
425. PRINT 102,SOLMX,SOLGNM
426. 102 FORMAT(15X,' SOLUTION :L INFINITY NORM =',E13.5,
427. * 5X,'GNOR4 = ,E13.5)
428.* PRINT 103, DIFMX/SOLMX, DIFGNqM/SOLGNM
429. 103 FORMAT(15X,' RELATIVE ERROR: L INFINITY NORM =',E13.5,
430. * 5X,'GNORM = ',E13.5)
431. CALL URTIMS(TIME)
432. RETURN
433. END
434. C
435. C
436. SUBROUTINE GRDFN(N,IMAX,JMAX,HH)
437. C SETS UP ARRAY N.
438. C IMAX THE DIMENSION IN THE X DIRECTION
439. C JMAX THE DIMENSION IN THE Y DIRECTION
440. C HH THE GRID SIZE
441. C THE ARRAY NST CONTAINS THE STARTING ADDRESSES OF THE ARRAYS.
442. C THE ARRAY IMX CONTAINS THE MAXIMUM ROW NUMBERS
443. C THE ARRAY JMX CONTAINS THE MAXIMUM COL NUMBERS
444. C THE ARRAY H CONTAINS THE GRID SIZES.
445. C
446. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
447. COMMON/GRD/NST(20),IMX(20),JMX(20),H(20)
448. COMMON /QDAT/NQSIZE,NQERR
449. DATA 1Q11!
450. NST(N)=1Q
451. IMX(N)=IMAX
452. JMX(N)=JMAX
453. H(N)=HH
454. IQ=IQ+IMAX*JMAX
455. IF(IQ.LE.NQSIZE+1) RETURN
456. NQERR-IQ-1

-84-

APPX-C-PFMG

457. END
458. C
459. C
460. SUBROUTINE INTSW(CCKF)
461. C INTERPOLATES CORRECTION ON COARSE GRID KC
462. C AND ADDS TO SOLUTION ON GRID KF.
463. C KF KF KC KF KF
464. C U =PHI(I W + U ;U
465. C KC
466. C
467. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

468. COMMON /SWDAT/NFGSW, NINTSW, NRESSW
469. GOTO(1,2),NINTSW
470. C
471. 1 CALL INTADD(KC,KF)
472. RETURN
473. C
474. 2 CALL INTADM(KC,KF)
475. RETURN
476. END
477. C
478. C
479. SUBROUTINE INTADD(KC,KF)
480. C LINEARLY INTERPOLATES CORRECTION ON COARSE GRID KC

481. C AND ADDS TO SOLUTION ON GRID KF.
482. C KF KF KC KF KF
483. C U PHI(I W + U ;U
484. C KC
485. C
486. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
487. COMMON Q(18000),ISTCC200),ISTF(200)
488. CALL KEY(KC,ISTC,IICJJC,HC)
489. CALL KEY(KF,ISTF,IIF,JJF,HF)
490. DO 1 IC=2,IIC
491. IF=2*IC-1
492. JF=l
493. IFO=ISTF(IF)

494. IFM=-ISTF(IF-1)
495. ICO=ISTC(IC)
496. ICM=-ISTC(IC-1)
497. DO 1 JC=2,JJC
498. JF=JF+2
499. A=-.5*(Q(ICO+JC)4Q(ICO+JC-1))
500. AM=.5*(Q(ICM+JC)+Q(ICM+JC-1))
501. Q(IFO+JF) =Q(IFO+JF)+Q(ICO+JC)
502. Q(IFM+JF) =Q(IFM+JF)+.5*(Q(ICO+JC)+Q(ICM+JC))
503. Q(IFO+JF-1)=Q(IFO+JF-1)+A

504. 1 Q(IFM+JF-1) = Q(IFM+JF-1)+.5*(A+AM)
505. RETURN
506. END
507. C
508. SUBROUTINE INTADM(KC,KF)
509. C MODIFICATION #6.
510. * C LINEARLY INTERPOLATES CORRECTION ON COARSE GRID KC
511. C AND ADDS TO SOLUTION ON GRID XF.
512. C CORRECTION ON~LY ADDED IF SOLUTION U ON FINE GRID IS
513. C NOT ZERO. SEE (5.15).

* -. - *-85-

==-APPX-C-PFMG

514. C K.F KF K: KF
515. C U I1 U + U
516. C KC
517. C
518. IMPLICIT DOUBLE PRECISION (A-H,O-z)
519. COMMON Q(18000),ISTC(200),ISTF(200)
520. CALL KEY(KCISTC,IICtJJCHC)
521. CALL KEY(KF,ISTF,IIFtJJFHP)
522. DO 1 IC=2,IIC
523. IF=2*IC-1
524. JF=1
525. IFO=ISTF(IF)

*526. IFM=ISTF(IF-1)
527. ICO=ISTC(IC)
528. ICM=IsTC(IC-1)

* F529. DO 1 JC=2,JJC
530. JF=JF+2
531. A=.5-(Q(ICO+JC)+Q(ICO+JC-1))
532. AJ4=.5*(Q(ICM+JC)+Q(ICM+JC-.1))
533. IF(Q(IFO+JF).NE.0)Q(IFO+JF) = Q(IFO+JF)+Q(ICO+JC)
534. IF(Q(IFM+JF).NE.0)Q(IFM+JF) = Q(IFM+JF)+.5*(Q(ICO+JC)+Q(ICM+JC))
535. £F(Q(IFO+JF-1).NE.0)Q(IFO4JF-1)=Q(IFO-+JF-1)+A
536. IF(Q(IFM+JF-1).NE.0)Q(IFM+JTF-1) = Q(IFM+JF-1)+.5*(A+AM)
537. 1 CONTINUE
538. RETURN
539. END
540. C
541. C
542. C
543. SUBROUTINE INTRP3(KC,KF)
544. C PERFORMS CUBIC INTERPOLATION

*545. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
546. COMMON Q(18000),IUF(200)tIUCC200)
547. CALL KEY(KFIUFIIFtJJFHF)
548. CALI KEY(KCIUC,IIC,JJC,HC)
549. C
550. C KF 11F KC K
551. C U =J U +I-U
552. C KC
553. C
554.* C INTERPOLATE IN COARSE COLUMNS USING COARSE COLUMN DATA
555. DO 20 IC=1,IIC

F556. IF=2*IC-1
557. IFO=IUF(IF)
558. ICO=IUC(IC)
559. Q(IFO+1)=Q(ICO+1)
560. C FIRST POINT IN COLUMN. USE EQU (6.3)
561. Q(IFO+2)-(5*Q(ICO+1)+15*Q(ICO+2)-5*Q(ICO+3)+Q(ICO+4))/16
562. JJC2=JJC-2
563. Do 10 JC=2tJJC2
564. JF=2*JC-1
565. Q(IFO+JF)-Q(ICO+JC)
566. C
567. C INTERIOR POINT IN COLUMN. USE EQU (6.2)
568. Q(IFO+JF+1)=C-Q(ICO+JC-1)+9*Q(ICO+JC)
569. * +9*Q(ICO+JC+1)-QCICO+JC+2))/16.
570. 10 CONTINUE

-86-

APPX-C-PFMG

571. Q(IFO+JJF-2)=Q(ICO+JJC-1)
572o Q(IFO+JJF-1)=(Q(ICO+JJC-3)-5*Q(ICO+JJC-2)
573. C
574. C LAST POINT IN COLUMN. USE EQU (6.3)
575. * +15*Q(ICO JJC-1)+5*Q(ICO+JJC))/16
576. Q(IFO+JJF)-Q(ICO+JJC)
577. 20 CONTINUE
578. C

579. C INTERPOLATE IN INTERMEDIATE FINE COLUMNS
580. C USING ROW DATA
581. C
582. C FIRST COLUMN. USE EQU (6.3)
583. IM1=IUF(I)

584. IO=IUF(2)
585. IP1=IUF(3)
586. IP3=IUF(5)
587. IP5=IUF(7)
588. DO 30 JfI,JJF
589. Q(IO+J)=(5*Q(IM1+J)+15*Q(IPI+J)
590. * -5*Q(IP3+J)+Q(IP5+J))/16.
591. 30 CONTINUE
592. C
593. C INTERMEDIATE COLUMNS. USE EQU (6.2)
594. IIF3=IIF-3
595. DO 40 I=4,IIF3,2
596. IM3=IUF(I-3)
597. IM1=IUF(I-1)
598. IO=IUF(I)
599. IP1=IUF(I+1)
600. IP3=IUF(I+3)
601. DO 40 J=1,JJF

602. Q(IO+J)=(-Q(IM3+J)+9*Q(IM1+J)
- r 603. * +9*Q(IPI+J)-Q(IP3+J))/16.

604. 40 CONTINUE
605. C
606. C LAST COLUMN. USE EQU (6.3)
607. IM5=IUF(IIF-6)
608. IM3=IUF(IIF-4)
609. IM1=IUF(IIF-2)
610. IO=IUF(IIF-1)
611. IP1IUF(IIF)

612. DO 50 J=1,JJF
613. Q(IO+J)=(Q(IM5+J)-5*Q(IM3+J)
614. * +15*Q(IM1+J)+5*Q(IP1+J))/16
615. 50 CONTINUE
616. RETURN
617. END
618. C
619. C
620. SUBROUTINE KEY(K,IST,IMAX,JMAX,HH)
621. C RECOVERS THE INFORMATION ABOUT ARRAY K SET UP BY
622. C THE SUBROUTINE GRDFN.
623. C THE VALUE OF THE GRID FUNCTION AT THE POINT (I,J)
624. C IS ADDRESSED AS U(IST(J)+I).

625. C
626. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
627. COMMON/GRD/NST(20), IMX(20),JMX(20),H(20)

-87-

===== APPX-C-PFMG

628. DIMENSION IST(1)

629. IMAX=IMX(K)

630. JMAX-JMX(K)
631. IS=NST(K)-JMAX-1
632. DO 1 I=1,IMAX

633. IS=IS + JMAX

634. 1 IST(I)=IS
635. HH=H(K)
636. RETURN
637. END
638. C
639. C

640. SUBROUTINE PUTB(F,K)

641. C INSERTS THE BOUNDARY VALUES OF THE FUNCTION F

642. C EVALUATED AT THE POINTS OF GRID K

643. C INTO THE ARRAY K.

644. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

645. COMMON Q(18000)
646. DIMENSION IST(200)

647. CALL KEY(KIST,II,JJ,H)

648. II1=II-1
649. DO I J=1,JJ

650. X=0.
651. Y=(J-1)*H
652. Q(IST(1)+J)=F(X,Y)
653. X=(II-1)*H
654. Q(IST(II)+J)=F(X,Y)
655. 1 CONTINUE
656. DO 2 1=2,II1

657. Y=0.
658. X=(I-1)*H
659. Q(IST(I)+I)=F(X,Y)

660. Y=(JJ-1)*H
661. Q(IST(I)+JJ)=F(X,Y)
662. 2 CONTINUE
663. RETURN

664. END
665. C
666. C
667. C
668. C
669. SUBROUTINE PUTF(K,F,NH)
670. C INSERTS THE VALUES OF THE FUNCTION F

671. C EVALUATED AT THE POINTS OF GRID K

672. C AND MULTIPLIED BY GRIDSIZE**NH

673. C INTO THE ARRAY K.

674. C
675. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

676. COMMON Q(18000),IST(600)

677. CALL KEY (K,IST,II,JJ,H)
678. H2-H**NH
679. DO I I=1,II
680. DO 1 Jfl,JJ
681. X=(I-1)*H

682. Yf(J-I)*H

683. 1 Q(IST(I)+J)=F(X,Y)*H2
684. RETURN

-88-

APPX-C-PFMG-----

685. END
686.• C

687. C
688. SUBROUTINE PUTU(KF,KC)
689. C THIS SUBROUTINE INJECTS THE SOLUTION ON THE FINE GRID

690. C KF INTO THE COARSE GRID KC.
691. C KC,0 KC KF
692. C U =I U
693. C KF
694. C
695. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
696. COMMON Q(18000),IUF(200),IUC(200)
697. CALL KEY(KF,IUF,IIF,JJF,HF)
698. CALL KEY(KC,IUC,IIC,JJC,HC)
699. DO 1 IC=1,IIC
700. IF=2*IC-1
701. IFO=IUF(IF)
702. ICO=IUC(IC)
703. JF-1
704. DO 1 JC=1,JJC

705. JF=JF+2
706. Q(ICO+JC)= Q(IFO+JF)
707. 1 CONTINUE

708. RETURN
709. END
710. C
711. C
712. SUBROUTINE RELAX(K,KRHS,ERR)
713. C NORMAL RELAXATION
714. C CARRIES OUT ONE GAUSS-SEIDEL PROJECTED
715. C SWEEP ON THE GRID K WITH RIGHT HAND SIDE IN ARRAY KRHS.
716. C RETURNS WITH ERR= G-NORM OF THE DYNAMIC RESIDUALS
717. C
718. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
719. COMMON Q(18000),IST(200),IRHS(200)
720. CALL KEY(K,IST,II,JJ,H)
721. CALL KEY(KRHS,IRHS,II,JJ,H)
722. II=II-1
723. Jl=JJ-1
724. ERR=O.
725. DO 1 I=2,I
726. IR=IRHS(I)
727. IO=IST(I)
728. IM=IST(I-1)
729. IP=IST(I+1)
730. DO 1 J=2,J1
731. A=Q(IR+J)-Q(IO+J+1)-Q(IO+J-1)-Q(IM+J)-Q(IP+J)
732. QT=-.25*A
733. QN=MAX(0.0,QT)
734. ERR=ERR+(QN-Q(IO+J))**2
735. 1 Q(IO+J)=QN
736. ERR-SQRT(ERR)/H
737. RETURN
738. END
739. C
740. SUBROUTINE RESBW(KF,KRF,KRC)
741. C SAME AS RESSW EXCEPT THAT ONLY THE RHS B IS TREATED

-89-

--- APPX-C-PFMG

742. C CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE

* 743. C IN ARRAY KRF , AND TRANSFERS INTO ARRAY KRC.

744. C BEFORE TRANSFER, THE RESIDUAL IS SCALED
* 745. C BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE

746. C FACT THAT THE GRID SIZE ON GRID KF IS HALF THE

747. C GRIDSIZE ON GRID KC.

748. C KRC KC KRF

749. C R = 4*S (B
750. C KF

751. C

752. COMMON /SWDAT/NFGSW,NINTSW,NRESSW

753. GOTO (1,2),NRESSW

754. C

755. 1 CALL RESBAL(KF,KRF,KRC)

756. RETURN
757. C

758. 2 CALL RESBL1(KF,KRF,KRC)

759. RETURN

760. END
761. C

762. C

763. SUBROUTINE RESBAL(KF,KRF,KRC)

764. C SAME AS RESCAL EXCEPT THAT ONLY RHS B IS TREATED

765. C CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE

766. C IN ARRAY KRF , AND INJECTS INTO ARRAY KRC.

767. C BEFORE INJECTION, THE RESIDUAL IS SCALED

768. C BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE

769. C FACT THAT THE GRID SIZE ON GRID KF IS HALF THE

770. C GRIDSIZE ON GRID KC.

771. C KRC KC KRF

772. C R 4*S (B
773. C KF

774. C

775. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

776. COMMON Q(18000),IUF(200),IRF(200),IRC(200)

777. CALL KEY(KF,IUF,IIF,JJF,HF)

778. CALL KEY(KRF,IRF,IIF,JJF,HF)

779. CALL KEY(KRC,IRC,IIC,JJC,HC)

780. IIC1=IIC-1

781. JJCI=JJC-1

782. DO 1 IC=2,IIC1

783. ICR=IRC(IC)

784. IF=2*IC-1

785. JF=l

786. IFR=IRF(IF)

787. IFO=IUF(IF)

788. IFM=IUF(IF-1)

789. IFP=IUF(IF+1)

790. DO 1 JC=2,JJC1
791. JF=JF+2

792. 1 Q(ICR+JC)=4.*(Q(IFR+JF))

793. RETURN

794. END

795. C
796. C
797. SUBROUTINE RESBL1(KF,KRF,KRC)

798. C SAME AS RESCLI EXCEPT THAT ONLY RHS B IS TREATED

-90-

===== APPX-C-PFMG ==

799. C MODIFICATION #5 UPDATED JUNE 23 1980

800. C USES WEIGHTED RESIDUALS NEAR THE BOUNDARY

801. C CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE

802. C IN ARRAY KRF , AND INJECTS INTO ARRAY KRC.

803. C BEFORE INJECTION, THE RESIDUAL IS SCALED

804. C BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE

805. C FACT THAT THE GRID SIZE ON GRID KF IS HALF THE

806. C GRIDSIZE ON GRID KC.

807. C KRC KC KRF

808. C R 4*S (B
809. C KF

810. C

811. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

812. COMMON Q(18000),IUF(200),IRF(200),IRC(200)

813. DIMENSION R(9)

814. CALL KEY(KF,IUF,IIF,JJF,HF)

815. CALL KEY(KRF,IRF,IIF,JJF,HF)

816. CALL KEY(KRC,IRC,IIC,JJC,HC)
817. IIC1=IIC-1

818. JJC1=JJC-I

819. DO 1 IC=2,IIC1

820. ICR=IRC(IC)

821. IF=2*IC-1

822. JF=1

823. IFR=IRF(IF)

824. IFO=IUF(IF)

825. IFM=IUF(IF-1)

826. IFP=IUF(IF+1)

827. DO I JC=2,JJC1

828. JF=JF+2

829. IF(Q(IFO+JF).EQ.0)GOTO 2

830. IF(Q(IFP+JF+1).GT.0 .AND. Q(IFP+JF-1).GT.0 .AND.

831. * Q(IFO+JF+1).GT.0 .AND. Q(IFO+JF-1).GT.0 .AND.

832. * Q(IFM+JF+1).GT.0 .AND. Q(IFM+JF-I).GT.0 .AND.

833. * Q(IFM+JF).GT.0 .AND. Q(IFP+JF).GT.0)GOTO 2

834. N=0

835. DO 3 11=1,3

836. I=IF+I1-2

837. DO 3 J1=1,3

838. J=JF+J1-2

839. N=N+1
840. IR=IRF(I)

841. IO=IUF(I)

842. IM=IUF(I-1)

843. IP=IUF(I+1)

844. S=Q(IR+J)

845. IF(Q(IO+J).EQ.0)S=0

846. R(N)=S

847. 3 CONTINUE

848. Q(ICR+JC)=R(5)+.5*(R(2)+R(4)+R(6)+R(8)+

849. * .5*(R(1)+R(3)+R(7)+R(9)))
850. GOTO 1

851. 2 Q(ICR+JC)=4.*Q(IFR+JF)

852. 1 CONTINUE

853. RETURN

854. END
855. C

-91-

===== APPX-C-PFMG

856. C
857. SUBROUTINE RESSW(KFKRFKRC)
858. C CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE

859. C IN ARRAY KRF , AND TRANSFERS INTO ARRAY KRC.

860. C BEFORE TRANSFER, THE RESIDUAL IS SCALED

861. C BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE

862. C FACT THAT THE GRID SIZE ON GRID KF IS HALF THE

863. C GRIDSIZE ON GRID KC.

864. C KRC KC KRF KF KF

865. C R 4*S (B - A U
866. C KF

867. C
868 . COMMON /SWDAT/NFGSW, NINTSW, NRESSW

869. GOTO (1,2),NRESSW

870. C

871. 1 CALL RESCAL(KF,KRF,KRC)

872. RETURN

873. C

874. 2 CALL RESCL1(KF,KRF,KRC)

875. RETURN

876. END

877. C

878. C
879. SUBROUTINE RESCAL (KF, KRF,KRC)

880. C CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE
881. C IN ARRAY KRF , AND INJECTS INTO ARRAY KRC.
882. C BEFORE INJECTION, THE RESIDUAL IS SCALED

883. C BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE

884. C FACT THAT THE GRID SIZE ON GRID KF IS HALF THE

885. C GRIDSIZE ON GRID KC.

886. C KRC KC KRF KF KF

887. C R =4*S (B - A U
888. C KF

889. C

890. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

891. COMMON Q(18000),IUF(200),IRF(200),IRC(200)

892. CALL KEY(KF,IUF,IIF,JJF,HF)

893. CALL KEY(KRF,IRF,IIF,JJF,HF)

894. CALL KEY(KRC,IRC,IIC,JJC,HC)

895. IIC1=IIC-1

896. JJCI=JJC-I

897. DO 1 IC=2,IIC1

898. ICR=IRC(IC)

899. IF=2*IC-1

900. JF=
901. IFR=IRF(IF)

902. IFO=IUF(IF)

903. IFM=IUF(IF-i)
904. IFP=IUF(IF+l)

905. DO 1 JC=2,JJC1

906. JF=JF+2

907. S=Q(IFO+JF+1)+Q(IFO+JF-I)+Q(IFM+JF)+Q(IFP+JF)
908. 1 Q(ICR+JC)=4.*(Q(IFR+JF)-S+4.*Q(IFO+JF))

909. RETURN

910. END

911. C

912. C

-92-

A--A09 652 WISCONSIN *IIV-MADISON MATHEMATICS RESEARCH CENTER F/s 12/1MULTIGRID AL6ORITHMS FOR THE SOLUTION OF LINEAR COMPLEMENTARIT-ETC(U)
OCT 80 A BRANDT. C W CRTER DAAG29-80-C-0O811

UNCLASSIFI1ED MRC-TR-2131 NL

22flflflflf

APPX-C-PFMG----

913. SUBROUTINE RESCL1(KF,KRF,KRC)
914. C MODIFICATION #5 UPDATED JUNE 23 1980
915. C USES WEIGHTED RESIDUALS NEAR THE BOUNDARY

916. C CALCULATES THE RESIDUAL ON GRID KF WITH RIGHT HAND SIDE

917. C IN ARRAY KRF , AND INJECTS INTO ARRAY KRC.

918. C BEFORE INJECTION, THE RESIDUAL IS SCALED

919. C BY MULTIPLYING BY THE FACTOR 4 TO TAKE ACCOUNT OF THE
920. C FACT THAT THE GRID SIZE ON GRID KF IS HALF THE
921. C GRIDSIZE ON GRID KC.

922. C KRC KC KRF KF KF
923. C R 4*S (B -A U

924. C KF
925. C
926. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
927. COMMON Q(18000),IUF(200),IRF(200),IRC(200)
928. DIMENSION R(9)
929. CALL KEY(KF,IUF,IIF,JJF,HF)

930. CALL KEY(KRF,IRF,IIF,JJF,HF)

931. CALL KEY(KRC,IRCIIC,JJC,HC)

932. IIC1=IIC-1

933. JJC1~JJC-1
934. DO 1 IC-2,IICl

935. ICR=IRC(IC)

936. IF=2*IC-1

937. JF=1

938. IFR7=IRF(IF)

939. IFO=IUF(IF)

940. IFM=IUF(IF-i)
941. IFP=IUF(IF+1)

942. DO 1 JC=2,JJC1

943. JF=JF+2
944. IF(Q(IFO+JF).EQ.)GOTO 2
945. IF(Q(IFP+JF+1).GT.O .AND. Q(IFP+JF-1).GT.0 -AND.

946. * Q(IFO+JF+1).GT.0 .AND. Q(IFO+JF-1).GT.0 -AND.

947. * Q(IFM+JF+1).GT.O .AND. Q(IFM+JF-1).GT.0 .AND.

948. * Q(IFM+JF).GT.0 .AND. Q(IFP+JF).GT.0)GOTO 2
949. N=O

950. DO 3 I1=1,3

951. I=IF+I1-2

952. DO 3 J1=1,3

953. J=JF+J1-2

954. N=N+1

955. IR-IRFCI)

956. IO=IUF(I)

957. IM=IUF(I-1)

958. IP=IUF(I+1)

959. S5Q(IO+J+1)+QCIO+J-1)+Q(IM+J)+Q(IP+J)

960. S=Q(IR+J)+4*Q(IO+J)-S

961. IFCQ(IO+J).EQ.0)S=0

962. R(N)=S

963. 3 CONTINUE

964. Q(ICR+JC)=R(5)+.5*(R(2)+R(4)+R(6)+R(8)+

965. 1 .5*(R(1)+R(3)+R(7)+R(9))
966. GOTO 1
967. 2 S=Q(IFO+JF+1)+Q(IFO+JF-1)+Q(IFM+JF)+Q(IFP+JF)
968. Q(ICR+JC)=4.*(Q(IFR+JF)-S+4.*Q(IFO+JF))
969. 1 CONTINUE

-93-

APPX-C-PFMG

970. •RETURN

971. END

972. C

973. C

974. SUBROUTINE SOLPRT(K,MPRINT)
975. C NOT TIMED

976. C PRINTS THE ARRAY K ON THE SUBARRAY MPRINT.
977. C IF K<MPRINT, PRINTS ENTIRE ARRAY K

978. C
979. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

980. COMMON Q(18000),QTEM(100),IST(600)

981. TIME=-URTIMG(0)

982. CALL KEY (MPRINT,IST,IIM,JJ,H)
983. CALL KEY (K,IST,II,JJ,H)

984. INTERV=1

985. IF(K.GT.MPRINT)INTERV=(II-1)/(IIM-1)

986. DO 20 J=JJ,1,-INTERV

987. L=0

988. DO 10 I=1,II,INTERV
989. C X AND Y ARE NOT PRINTED HERE, BUT ARE COMPUTED IN
990. C CASE A LATER VERSION NEEDS THEM.
991. X=(I-1)*H

992. Y=(J-1)*H

993. L=L+I
994. QTEM(L)=Q(IST(I)+J)
995. 10 CONTINUE

996. PRINT *,(QTEM(LL),LL=1,L)
997. 20 CONTINUE

998. CALL URTIMS(TIME)
999. RETURN
1000. END

1001. C

1002. C

1003. C
1004. SUBROUTINE SOLRED
1005. C NOT TIMED
1006. C PUTS ACCURATE SOLUTION INTO GRID NGRSOL
1007. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

1008. COMMON Q(18000),ISTA(200),QTEM(600)

1009. COMMON /SOLTAU/M,NGRSOL,PT

1010. COMMON /PRBDAT/Y1,Y2,A,R

1011. COMMON /SWDAT/NFGSW,NINTSW,NRESSW

1012. TIME=URTIMG(0)
1013. CALL KEY(NGRSOL,ISTA,IIA,JJA,HA)

1014. C

1015. GOTO(1,2),NFGSW

1016. C

1017. C DAM PROBLEM
1018. C ACCURATE SOL IS DOUBLE PRECISION ON GRID M=7

1019. C WITH INITIAL GRID 2X3
1020. C STORED IN FILE 10.

1021. 1 CONTINUE

1022. MA=7

1023. IIMA=2**(MA-1)*2+1

1024. INTERV=(IIMA-I)/(IIA-1)

1025. JJMA=(JJA-1)*INTERV+l

1026. REWIND 10

-94-

= APPX-C-PFMG=

1027. DO 20 JA=1,JJMA
1028. READ(10) (QTEM(IA),IA-I,IIKA)

1029. J=(JA-1)/INTERV+I
1030. IF((J-1)*INTERV .NE. JA-1)GOTO 20
1031. DO 10 I=1,IIA
1032. IA=(I-1)*INTERV+I
1033. Q(ISTA(I)+J)=QTEM(IA)

1034. 10 CONTINUE
1035. 20 CONTINUE
1036. GOTO 1000
1037. C
1038. C

1039. C PROBLEM OF SECTION 5: (5.3) AND (5.4)
1040. C EXACT SOLUTION KNOWN
1041. 2 CONTINUE
1042. D=2.5*R
1043. DO 30 I=I,IIA
1044. IO=ISTA(I)
1045. DO 25 J=1,JJA
1046. X=(I-I)*HA
1047. Y=(J-1)*HA
1048. A=DMAX1(0.D0,D-R*X-Y)
1049. B=X+Y
1050. G=A*A*(DCOS(B)+2)
1051. Q(IO+J)=G
1052. 25 CONTINUE
1053. 30 CONTINUE
1054. GOTO 1000
1055. C
1056. 1000 CONTINUE
1057. CALL URTIMS(TIME)
1058. RETURN
1059. END

1060. C
1061. SUBROUTINE SUBTRC(KF,KC)
1062. C THIS SUBROUTINE COMPUTES THE VALUE INJECTED FROM GRID KF TO

1063. C GRID KC AND SUBTRACTS IT FROM THE SOLUTION ON GRID KC.
1064. C KC KC KC KF
1065. C W =U - I U
1066. C KF
1067. C
1068. IMPLICIT DOUBLE PRECISION (A-H,O-Z)
1069. COMMON Q(18000),IUF(200),IUC(200)
1070. CALL KEY(KF,IUF,IIF,JJF,HF)
1071. CALL KEY(KC,IUC,IIC,JJC,HC)
1072. DO 1 IC=1,IIC
1073. IF=2*IC-1
1074. IFO=IUF(IF)
1075. ICO=IUC(IC)
1076. JF=-1
1077. DO 1 JC-1,JJC

1078. JF-JF+2
1079. Q(ICO+JC)=Q(ICO+JC)-Q(IFO+JF)
1080. 1 CONTINUE
1081. RETURN
1082. END

1083. C

-95-

J"n'= APPX-C-PFMG --

1084. C

1085. SUBROUTINE TAUCAM(KU,KR,KF,ITAU,TAUGNM)

1086. C COMPUTES TAU AND TAU-Z GREEN NORM

1087. C UPDATED AUGUST 26 1980

1088. C PERFORMS TAU EXTRAPOLATION IF ITAU-1

1089. C BY ADDING TAU TO RHS ON GRID

1090. C GRID KU CONTAINS U

1091. C GRID KR CONTAINS SUM OF FIRST TWO TERMS IN (6.7)

1092. C PREVIOUSLY OBTAINED USING RESSW AND CORSRE

1093. C GRID KF CONTAINS THIRD BRACKET IN (6.7) PREVIOUSLY

1094. C COMPUTED BY RESBW

1095. C ITAU IS PARAMETER WHICH DETERMINES WHETHER EXTRAPOLATION

1096. C WILL BE PERFORMED

1097. C TAUGNM IS RETURNED AS GREEN NORM OF TAU-Z

1098. C

1099. C K-1 PT K-1 K K K K-1 K-i K K-1 K

1100. C T 2 *(4S (B - A U)) + (A I U) - (4S B

1101. C K K K

1102. C 2**PT-1

1103. IMPLICIT DOUBLE PRECISION (A-H,O-Z)

1104. COMMON Q(18000),IKR(200),IKF(200),IKU(2
0 0)

1105 . COMMON /SOLTAU/M, NGRSOL, PT

1106. CALL KEY(KR,IKR,II,JJ,HK)

1107. CALL KEY(KF,IKF,II,JJ,HK)

1108. CALL KEY(KU,IKUII,JJ,HK)

1109. A=2.**PT/(2.**PT-1)

1110 . TAUGNM=O
1111.• I1=II-1

1112. JJl=JJ-1

1113. DO 1 IK=2,II1
1114. IRK=IKR(IK)

1115. IFKO=IKF(IK)
1116. IO=IKU(IK)

1117. IM=IKU(IK-1)
1118. IP=IKU(IK+I)

1119. DO 1 JK=2,JJ1

1120. T=Q(IRK+JK)-Q(IFKO+JK)

1121. T=A*T
1122. IF(Q(IO+JK).EQ.0)T=0

1123. TAUGNM=TAUGNM+T*T

1124. IF(Q(JK+IO+I).EQ.0 .OR.

1125. * Q(IO+JK-1).EQ.0 .OR. Q(IM+JK).EQ.0 .OR.

1126. * Q(IP+JK).EQ.0) T=0

1127. IF(ITAU.EQ.1)Q(IRK+JK)=T+Q(IFKO+JK)
1128. 1 CONTINUE

1129. TAUGNM=SQRT(TAUGNM)/HK
1130. RETURN

1131. END

-96-

SEC RITY C L ASSIFIC ATIO N O F TH IS P AG E ,'I'h-e, s at o ntered)

IP • AfP BtORF COMPI.ETING FORM
. IEPORT NUMBER j2GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE rand Subtitle) .T'r,. r -r oT A ;ERIOD COVERED

,IAULTIGRID-ALGORITHMS FOR THE SOLUTION OF LINEAR .ummary :epoxt -no specific

'WMPLEMENRITY PROBLEMS ARIi G FROM FRE .pgA ' .iod
U J6. PERFORMING ORG. REPORT NUMBER

E&UNDATY PROBFEM*

7. AUTHOR(&) a. TRACT OR GRANT NUMBER(a)

Achi lBrandt.Colin W.ICryer '- DAAGZ9-80-C-004JJ r/an.,McS77-26732

9. PERFORMING ORGANIZATION NAME ANO ADDRESS I0. PROGRAM ELEMENT. PROJECT, 1'ASK

AREA & WORK UNIT NUMBERS
Mathematics Research Center, University of Work Unit # 3 (Numerical
610 Walnut Street Wisconsin Analysis and Computer Science

Madison, Wisconsin 53706
11. CONTROLLING OFFICE NAME ANr) ADDRESS 1 12. ,AEPORIT DATE

'~ jj. fjOctober 1980O
See Item 18 below... 13.'BER OF PAGES

96
14. MONITORING .GENCY NAME B ADDRESS(If dilferent ftom Controlling Office) 15. SECURITY CLASS. (of this report)

T - S/h UNCLASSIFIED
ISa. DECL ASSI FICATION/DOWNGRADIf. G

SCHEDULE

16. DISTRIBUTION STATEMENT (.thi. Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMFrNT (of the abstract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, D.C. 20550

Research Triangle Park
North Carolina 27709

19. KEY WORDS (Continue on reveree side if necessary and identify by block number)

Multigrid Algorithms

Free Boundary Problems
Linear Complementarity Problems

20. AN TRACT (Continue on reverse side if necessary and Identify by block nitmber)

'A(We show that the multigrid algorithms of Brandt can be adapted to solve
linear complementarity problems arising from free boundary problems. The multi-
grid algorithms are significantly faster than previous algorithms. Using the
multigrid algorithms, which are simple modifications of multigrid algorithms for
equalities, it is possible to solve the difference equations to within truncation
error using less work than the equivalent of six Gauss-Seidel sweeps on the
finest grid.

* ~~DD 1JAN 73 1473 COI 10. OF I NOV IS IS OBSOLETEUCL STID 6DO ,,AN,, ~~UNCIASSTFIED ., ' 0.

SECURITY CLASSIFICATION OF THIS PAGE (Ilhin Data Entered)

aUu

